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We calculate the binary decision costs of different strategies for measurement of a given ensemble of
N independent and identically prepared polarized spid farticles. The results obtained prove that,
for arbitrarily given values of the prior probabilities and an arbitrary number of constituent particles,
the cost of a combined measurement is the same as that for sequential measurements of the individual
particles.

PACS numbers: 02.50.Le, 03.65.Bz, 05.30.Ch, 89.70.+c

The task of the experimentalist in a problem of experi-These notions, developed by Helstrom and others [4—
mental design is to find an optimal observational strategy6] and also recently extended by Jones [7], are then
Ordinarily one must choose among different strategies beapplied to obtain the optimal strategy for a Bayes decision
fore the data can be obtained, and hence one must perforbetween two quantum mechanical pure states, for an
a preposterior analysis.When the experiment involves a ensemble of polarized spiry2 particles. In this example,
decision among different quantum mechanical states, suche first consider the application of (quantum) Bayes
an analysis is indeed important, since, unlike the classicalequential analysis to this ensemble. The result is then
case, repeated samplings of the same system are not gexompared with a combined measurement of the entire
erally permitted. ensemble, treated as a single composite system (i.e.,

There are a number of different approaches to theimultaneous measurement of all the individual particles).
determination of optimal strategies. In the information-Other strategies consisting of combined measurements of
theoretic approach, one typically ascertains the strateggubensembles are also considered. The Bayes solution to
that maximizes the mutual information (see, e.g., [1]), buthe problem demonstrates that the Bayes cost for separate
this is generally difficult, owing to the nonlinear nature sequential measurements of the individual particles is the
of the Shannon information. In the minimax approachsame as that of a single combined measurement. This
[2], one finds the strategy that minimizes the maximumresult differs from that predicted by Peres and Wootters
cost (or loss) incurred by the decision among differen{8]. Any other strategy turns out to entail a higher
strategies. When certai priori knowledge concerning expected cost.
the nature of the state is available, then one may use First, consider a decision problem requiring a choice
a Bayes procedure to seek a strategy that minimizeamongM hypothesedd,, ..., Hy concerning a quantum
the expected cost [2,3]. This approach is based uposystem. Hypothesid, asserts that the system is in
repeated use of Bayes’ theorem in order to replace pricthe state having the associated density operatotk =
by posterior distributions in accordance with the datal,..., M), and the prior probability of thgth state is¢;,
obtained from experiments. with M

In the present Letter, we study the Bayesian approach Z & =1. @
to a binary decision problem (a decision requiring choices k=1
between two different states). First, we briefly introduceFrom past experience, one knows that the system is in the
the Bayesian approach to quantum hypothesis testingth state with a relative frequency;. The self-adjoint
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operatorsp, act on the vectors of a Hilbert spadé , are _ &Gy —Cn) _ € )
non-negative definite, and have unit trace. Y E(Cp — Cp) 1 - ¢

A quantum decision strategis characterized by a
probability operator measuréPOM) [4] on FH, i.e., a
set of M non-negative definite self-adjoint operatdis
satisfying

Here and in the sequel, we choose a 0-1 cost structure
Cij =1 — §;;, i.e., assign cost 1 to an incorrect decision
” and 0 to a correct decision. Also the prior probability for
Z o =1 2 state 1is given by = &, and hence&, = 1 — £.
— J ’ Now consider an experiment where a physicist must
/ estimate (decide) the direction of polarization of a given
If this POM is applied to the system when hypothesisensemble ofV spin 1/2 particles, using a Stern-Gerlach
H, is true, then the conditional probability of choosing (SG) device. The physicist knows that the particles have

hypothesisH; is given by been filtered through another SG device with a magnetic
field in the x-y plane at a constant angtg or 6, from
PriX = j|W =k) = Tr(pill;). (3) thex axis, and in either case the spin-up state has been

selected. The physicist can select the orientation angle
HereX denotes the random variable that is to be observeg, of the detector relative to the axis. When the
and W, typically being the parameter, is the unknown particle passes through the field of the detector magnet,
state of nature. _ the physicist observes either the spin-up (head) or spin-
Now letC;; be the cost of choosing hypothesiswhen  down (tail) state, whereupon he must decide between the
Hj is true. Then the expected cost of the observationajternativesd, (i.e., the polarization directio = 6,)
strategy specified by the POMI;} is [4] and d,. The values of the angleg®,} are not specified,
_ M M M but the difference between the two angles is given by
C=D> > &CyTp L) =Ty RIL, (4 (o, — 6,] = 26.
i=1j=l i First, consider the case where the physicist performs se-
guential observations of the individual spifi2lparticles.
Suppose, for simplicity, tha¥ = 1. The physicist must
M decide, either before or after the observation, whether the
R, = Z EiCiipj - (5) particle is polarized in th&, or 8, direction. If a de-
j=1 cision were to be chosen without any observation, then
a Bayes decision against the prior distributiétW) of
A set{ll;} of POM that minimizes the cost (4) under w (in this case,W = 1 or 2) would be optimal. Sup-
the constraints (_2*) is defined as optimal, and the cost igose thatX (spin “up” or “down”) is observed before a
Bayes, i.e.C = C (the superscript here corresponds to decision is chosen. Then the physicist follows the same
the optimal strategy). Necessary and sufficient conditiongecision procedure as in the previous case. However, the
for the optimality of a POM are known to be [5,6] the difference here is that the distribution & has changed

where the Hermitiamisk operatorsr; are defined by

self-adjointness of the operator from the prior to the posterior distribution. Hence a Bayes
M M decision against the posterior distributionWfis now op-
Y = DRI, = D IR, (6) timal.
Jj=1 Jj=1 When the state of the system 5, the conditional

) o probability for observing the spin-up (+1) state is given
and the non-negative definiteness of the operRfor- Y |
forall j = 1,...,M. The minimum expected Bayes cost
is thus

bi(p) =PrX = +1|W = 6;) = co§<u>.

C(e{IT) = TrY. (7) 2
In a simple case wherdf = 2, i.e., for binary deci- (10)

sions, one can easily verify [4] that the optimal POM is

projection valued, and the Bayes cost becomes If one fixes the angleb, then the experiment is entirely

analogous to the classical coin tossing problem [9] for
—x L coins with bias given by the abovge. However, having
C (EAIG)) = &1Cn + &0 the freedom to choose the anglefor each value of the

prior £, the physicist must choose an optimal direction

7;>0

£sing; — (1 — £)sind,
£cosf; — (1 — &)cosb,

where n; are the eigenvalues of the operafir — vp1,

with ¢0pt(§) = tan_1<

). av
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which can be calculated by finding the optimal PQNI;}  physicist must turn the device in accordance with formula

[9]. Hence we have a problem of tossing quantum coingl1). This results in changing the bidg(®) of the

with bias depending upon the prior probabilgy “coins” at each stage, and hence one must also incorporate
Having chosen the optimal anglé,,, the Bayes the bias tree (which proliferates2"). However, it turns

decision rule specifies tha is to be chosen if the spin- out that this optimal orientation forces the posterior tree

up state is observed, arfld otherwise. The Bayes cost to recombine into two branches, i.e.,

against the priog, whenN = 1, can easily be obtained

by calculating the eigenvalues ¢f, — yp;, with the En, +) = %(1 + \/1 —4£(1 - §) Cog(n—l)(;),

result [10]

(15)

where * corresponds to the outcome of the ldat —
(12)  Dth] trial being spin up (+) or down (-). This result can

Now suppose tha¥ = 2 and that the result of measure- P& proven by induction as follows. First, far= 1, it
ment of the first particle has been obtained. As mentionelf easily verified that{(1, *) = £(*) as given in (13)
above, the physicist must follow the same procedures a&nd (14). Next assume that the I&sth) outcome of the
in the caseV = 1, with the prior¢ replaced by the poste- trial is (=) and that the posterior is given by the above

rior distribution& (). From Bayes’ theorem, the posterior ¢ (n, —). Then, if the next trial outcome is (+), it follows
probability thatd = 6, is given by from Bayes’ theorem that the posterior distribution, after

n + 1 observations, is given by

Cc( ) = %(1 —~ \/1 —2&(1 — £)(cos2 + 1)).

. bi(p)¢
i nea-n P bi()éln, —) ,
o bi($)E(n, =) + b1 — (n, -]
[1 = by(¢)]E with ¢ = ¢opi(£(n, —)). After some algebra, one can
(-) = , (14) show that the above&(--- — +) = £&(n + 1,+). The
[1 = bi(@)]¢ + [1 = ba(@)](1 = £) 4 other three casest(--- — —), etc.] can also be treated

in the same manner.

according to the outcome (+ or —) of the first measure- The weights for different branches do not recom-

ment. The optimal orientation angle, before performingPine in the quantum case either, however, since

the second measurement, is now givenday, (£(+)) or € (§(n, +),1) = C (£(n, —), 1); the final average cost

bopt(£(—)), respectively. The Bayes cost for this caseis just C (£(n, ), 1) times the sum of all the different

(N = 2) is given by the weighted average, i.e., weights (which is just 1), and hence we finally deduce
that the Bayes cost for sequential observations is

T = bigC (E(+). 1) + byll — E)T(E(-).1).

Next consider an arbitrary numbev of particles.
Again the procedures are the same as above, except = %(1 - \/1 —4£(1 — ér)COgN(g)’ (16)
that the prior is now replaced by one of ti' !

posteriors{é(+ + ---+),...}, after observations aV — .
: . o for either value of thé N — 1)th outcome (+ or -).
1 particles. In a classical Bayes decision procedure [2,3], Next consider theé case 3vhere the pr(lysicisz reats the

it is difficult to obtain the Bayes cost as a closed function . . :
of N. The reason is that, first, one must studytiee[11] entire ensemble as a single composite system. The total
' ’ ’ spin of a system withV particles is just¥/2, and the

of the posterior distributions, with branches proliferating . X ; . X
as~2V. To each branch (i.e., posterior) of the tree, OnedenS|ty operator for a spiiv/2 particle polarized in the

associates the coét (-, 1) and then calculates the weight directionn = (cos,sing, 0) is given by

(probability) for the sequence of outcomes associated B o

with that branch. After these considerations, one can, in [5(0)]n = 27 ¥yCp yCpe "M, (17)
principle, obtain the weighted average of the cost, which

involves2V~! terms. (Note that, for classical procedures,where(n,m) = 0,...,N, andyC,, = N!/m!(N — m)!.

the branches of the posterior tree do recombine and henégcording to the result in (8), one must find the eigenval-
proliferate as~N. However, the weights associated with ues of the matrixp, — yp; in order to obtain the Bayes
the branches do not recombine, and therefore one cann@®st. We first calculate the eigenvalues as follows. Define

C'(¢,N) = C(¢(N,*),1)

avoid the consideration @ ! terms.) two vectorsu = {u,} andv = {v,} by
In the case of our “guantum coins,” the situation .
appears even worse, since, after each observation, the up, = 2°N2/yC,y MO (18)
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and tially combined or not, consists in updating the posterior
v, =2 N2 [TE inds (19) distributions. That iSZ the re_sults of a_nyinter_mediate_njea-

" N surements are not directly involved in the final decision.
Since the Bayes cost is a monotonically decreasing func-
tion of the number of updating steps, which can be seen
from Egs. (15) and (16), this implies that any partially
combined measurements will increase the cost. There-
fore, we may now conclude that the optimal measure-
ment strategy consists in either performing a combined
easurement of the entire ensemble or performing se-
0ghluential measurements of the individual particles. Any
other strategies will result in higher costs (unless we as-
sign different weights to partially combined intermediate

measurements).

This result is quite different from that expected by
Peres and Wootters, who conjectured that sequential
measurements can never be as efficient as a combined
measurement [8]. However, it is important to note that
their conjecture is based upon an information-theoretic
approach, and the solution of an optimization problem

AW = ciu* — yeov' (21) using a Bayesian approach can yield a different result.
Massar and Popescu [12], on the other hand, have proved
On the other hand, if we form the inner product of the twothe above-mentioned conjecture explicitly for the case

Then (p1)mn = uyu, and (p2)m, = v, v,. Since the
inner productn - u* = v - v¥ = 1, one obtains

ﬁlu* = Z(ﬁl)mnuz =u"
n

and, similarly,p,v* = v*. Now letw and A be, respec-
tively, an eigenvector and the corresponding eigenvalue
the matrixp, — vp1, i.e.,

(P2 — yp)W = Aw. (20)

We may expand the eigenvecwrin terms of a basis that
contains eithem* or v*, i.e., w = cju* + u’, orw =
cov* + vi. Hereu' denotes some vector orthogonal
to u*, and similarly forvi. However, sincepu’, =
pavi = 0, we have

vectorsw = c;u* + u’] andu, we obtain N = 2. The method used therein is effectively similar
‘ y to a Bayesian approach, without the use of the prior

w-u=c =—— —c(v -u), (22) distributions, but with a nondiagonal cost function and an

A A infinite number of hypotheses. However, when a prior

and similarly distribution is available, the Bayes solution is known
Wov=cy = ﬁ(u* y) — 162. (23) to b_e optimal in general [2]. In our case, the. prior

A A is given to the observer as a part of the experimental

setup; hence the criticism sometimes directed against
the subjective nature of the Bayesian approach does not
apply. If prior knowledge is not available, one can still

employ the Bayesian approach, using a noninformative

Without any loss of generality, we may now sgt= 1,
and then by eliminating, from the above equations, we
obtain the eigenvalues of the matgx — vp,, i.e.,

_ 1 R v , prior. However, the analysis of such cases is beyond the
Az =3 {(1 ) * \/(1 7) 4y(a 1)}’ scope of the present Letter.

(24) Throughout the present Letter, we have considered
Where only the cost associated with making decisions. In any

practical situation, on the other hand, one must take into
A= (v"-u)(u* - v) = cosV (). (25)  consideration other costs (e.g., the observational cost, the
cost of analyzing the results, etc.). In our example of
Therefore, the binary Bayes decision cost for a Spif2  sequential analysis, for example, at each stage before
particle is performing an observation, the physicist must analyze the
. | previous results in order to determine the optimal turning
C(&N) = 7(1 - \/1 —4s(1 = §) CO§N5>~ (26)  angle. Assuming the linearity of the utility function
(e.g., that the total cost is just the sum of the decision
One immediately observes that the above cost (26) is theost and the observational costs), one can easily find the
same as that obtained from sequential analysis, given byptimal strategy in a more general situation. These other
(16). Hence the Bayes solution to our optimization prob-costs, however, depend upon the specific applications
lem shows that a combined measurement is as advantgexperiments) concerned and therefore cannot be treated
geous as sequential measurements. These two strategigsa systematic manner.
however, are not the only ones, and many other partially In connection with the decision problem for classical
combined measurement procedures are possible. Howeins which was briefly mentioned above, it is interesting
ever, in the present formalism of sequential analysis, théo note that the present quantum binary decision problem
only effect of any intermediate measurements, either parorresponds to a classical problem where the number of
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