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We calculate the binary decision costs of different strategies for measurement of a given ensemble
N independent and identically prepared polarized spin 1y2 particles. The results obtained prove that,
for arbitrarily given values of the prior probabilities and an arbitrary number of constituent particles,
the cost of a combined measurement is the same as that for sequential measurements of the individ
particles.
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The task of the experimentalist in a problem of expe
mental design is to find an optimal observational strateg
Ordinarily one must choose among different strategies
fore the data can be obtained, and hence one must perf
a preposterior analysis.When the experiment involves a
decision among different quantum mechanical states, s
an analysis is indeed important, since, unlike the classi
case, repeated samplings of the same system are not
erally permitted.

There are a number of different approaches to t
determination of optimal strategies. In the information
theoretic approach, one typically ascertains the strate
that maximizes the mutual information (see, e.g., [1]), b
this is generally difficult, owing to the nonlinear natur
of the Shannon information. In the minimax approac
[2], one finds the strategy that minimizes the maximu
cost (or loss) incurred by the decision among differe
strategies. When certaina priori knowledge concerning
the nature of the state is available, then one may u
a Bayes procedure to seek a strategy that minimiz
the expected cost [2,3]. This approach is based up
repeated use of Bayes’ theorem in order to replace pr
by posterior distributions in accordance with the da
obtained from experiments.

In the present Letter, we study the Bayesian approa
to a binary decision problem (a decision requiring choic
between two different states). First, we briefly introduc
the Bayesian approach to quantum hypothesis testi
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These notions, developed by Helstrom and others [
6] and also recently extended by Jones [7], are th
applied to obtain the optimal strategy for a Bayes decisi
between two quantum mechanical pure states, for
ensemble of polarized spin 1y2 particles. In this example,
we first consider the application of (quantum) Baye
sequential analysis to this ensemble. The result is th
compared with a combined measurement of the ent
ensemble, treated as a single composite system (
simultaneous measurement of all the individual particle
Other strategies consisting of combined measurements
subensembles are also considered. The Bayes solutio
the problem demonstrates that the Bayes cost for sepa
sequential measurements of the individual particles is t
same as that of a single combined measurement. T
result differs from that predicted by Peres and Wootte
[8]. Any other strategy turns out to entail a highe
expected cost.

First, consider a decision problem requiring a choic
amongM hypothesesH1, . . . , HM concerning a quantum
system. HypothesisHk asserts that the system is in
the state having the associated density operatorr̂k sk ­
1, . . . , Md, and the prior probability of thejth state isjj ,
with MX

k­1

jk ­ 1 . (1)

From past experience, one knows that the system is in
jth state with a relative frequencyjj . The self-adjoint
© 1995 The American Physical Society 1
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operatorsr̂k act on the vectors of a Hilbert spaceH , are
non-negative definite, and have unit trace.

A quantum decision strategyis characterized by a
probability operator measure(POM) [4] on H , i.e., a
set of M non-negative definite self-adjoint operatorsPj

satisfying
MX

j­1

Pj ­ 1 . (2)

If this POM is applied to the system when hypothes
Hk is true, then the conditional probability of choosin
hypothesisHj is given by

PrsX ­ j j W ­ kd ­ Trs r̂kPjd . (3)

HereX denotes the random variable that is to be observ
and W , typically being the parameter, is the unknow
state of nature.

Now let Cij be the cost of choosing hypothesisHi when
Hj is true. Then the expected cost of the observation
strategy specified by the POMhPjj is [4]

C ­
MX

i­1

MX
j­1

jjCijTrsr̂jPid ; Tr
MX
i

RiPi , (4)

where the Hermitianrisk operatorsRi are defined by

Ri ­
MX

j­1

jjCijr̂j . (5)

A set hPjj of POM that minimizes the cost (4) unde
the constraints (2) is defined as optimal, and the cos
Bayes, i.e.,C ­ C

p (the superscriptp here corresponds to
the optimal strategy). Necessary and sufficient conditio
for the optimality of a POM are known to be [5,6] the
self-adjointness of the operator

Y ­
MX

j­1

RjPj ­
MX

j­1

PjRj (6)

and the non-negative definiteness of the operatorRj 2 Y

for all j ­ 1, . . . , M. The minimum expected Bayes cos
is thus

C
psj, hPp

j jd ­ TrY . (7)

In a simple case whereM ­ 2, i.e., for binary deci-
sions, one can easily verify [4] that the optimal POM
projection valued, and the Bayes cost becomes

C
psj, hPp

j jd ­ j1C11 1 j2C12

2 j2sC12 2 C22d
X

hi.0

hi , (8)

wherehi are the eigenvalues of the operatorr̂2 2 gr̂1,
with
2
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g ­
j1sC21 2 C11d
j2sC12 2 C22d

­
j

1 2 j
. (9)

Here and in the sequel, we choose a 0-1 cost struct
Cij ­ 1 2 dij, i.e., assign cost 1 to an incorrect decisio
and 0 to a correct decision. Also the prior probability fo
state 1 is given byj1 ­ j, and hencej2 ­ 1 2 j.

Now consider an experiment where a physicist mu
estimate (decide) the direction of polarization of a give
ensemble ofN spin 1y2 particles, using a Stern-Gerlac
(SG) device. The physicist knows that the particles ha
been filtered through another SG device with a magne
field in the x-y plane at a constant angleu1 or u2 from
the x axis, and in either case the spin-up state has be
selected. The physicist can select the orientation an
f of the detector relative to thex axis. When the
particle passes through the field of the detector magn
the physicist observes either the spin-up (head) or sp
down (tail) state, whereupon he must decide between
alternativesu1 (i.e., the polarization directionu ­ u1)
and u2. The values of the angleshukj are not specified,
but the difference between the two angles is given
ju2 2 u1j ­ 2d.

First, consider the case where the physicist performs
quential observations of the individual spin 1y2 particles.
Suppose, for simplicity, thatN ­ 1. The physicist must
decide, either before or after the observation, whether
particle is polarized in theu1 or u2 direction. If a de-
cision were to be chosen without any observation, th
a Bayes decision against the prior distributionjsW d of
W (in this case,W ­ 1 or 2) would be optimal. Sup-
pose thatX (spin “up” or “down”) is observed before a
decision is chosen. Then the physicist follows the sam
decision procedure as in the previous case. However,
difference here is that the distribution ofW has changed
from the prior to the posterior distribution. Hence a Bay
decision against the posterior distribution ofW is now op-
timal.

When the state of the system iŝrk , the conditional
probability for observing the spin-up (+1) state is give
by

bksfd ; PrsX ­ 11 j W ­ ukd ­ cos2
µ

uk 2 f

2

∂
.

(10)

If one fixes the anglef, then the experiment is entirely
analogous to the classical coin tossing problem [9] f
coins with bias given by the abovebk . However, having
the freedom to choose the anglef for each value of the
prior j, the physicist must choose an optimal directio
given by [10]

foptsjd ­ tan21

µ
j sinu1 2 s1 2 jd sinu2

j cosu1 2 s1 2 jd cosu2

∂
, (11)
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which can be calculated by finding the optimal POMhPp
j j

[9]. Hence we have a problem of tossing quantum co
with bias depending upon the prior probabilityj.

Having chosen the optimal anglefopt, the Bayes
decision rule specifies thatu1 is to be chosen if the spin
up state is observed, andu2 otherwise. The Bayes cos
against the priorj, whenN ­ 1, can easily be obtaine
by calculating the eigenvalues of̂r2 2 gr̂1, with the
result [10]

C
psj, 1d ­

1
2

µ
1 2

q
1 2 2js1 2 jd scos2d 1 1d

∂
.

(12)

Now suppose thatN ­ 2 and that the result of measure
ment of the first particle has been obtained. As mentio
above, the physicist must follow the same procedures
in the caseN ­ 1, with the priorj replaced by the poste
rior distributionjs6d. From Bayes’ theorem, the posterio
probability thatu ­ u1 is given by

js1d ­
b1sfdj

b1sfdj 1 b2sfd s1 2 jd
(13)

or

js2d ­
f1 2 b1sfdgj

f1 2 b1sfdgj 1 f1 2 b2sfdg s1 2 jd
, (14)

according to the outcome (+ or –) of the first measu
ment. The optimal orientation angle, before performi
the second measurement, is now given byfoptsssjs1dddd or
foptsssjs2dddd, respectively. The Bayes cost for this ca
sN ­ 2d is given by the weighted average, i.e.,

Cp ­ b1jCpsssjs1d, 1ddd 1 b2s1 2 jdCpsssjs2d, 1ddd .

Next consider an arbitrary numberN of particles.
Again the procedures are the same as above, ex
that the prior is now replaced by one of the2N21

posteriorshjs1 1 · · · 1d, . . .j, after observations ofN 2

1 particles. In a classical Bayes decision procedure [2
it is difficult to obtain the Bayes cost as a closed functi
of N . The reason is that, first, one must study thetree[11]
of the posterior distributions, with branches proliferati
as ,2N . To each branch (i.e., posterior) of the tree, o
associates the costC

ps?, 1d and then calculates the weigh
(probability) for the sequence of outcomes associa
with that branch. After these considerations, one can
principle, obtain the weighted average of the cost, wh
involves2N21 terms. (Note that, for classical procedure
the branches of the posterior tree do recombine and he
proliferate as,N. However, the weights associated wi
the branches do not recombine, and therefore one ca
avoid the consideration of2N21 terms.)

In the case of our “quantum coins,” the situatio
appears even worse, since, after each observation,
s
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physicist must turn the device in accordance with formu
(11). This results in changing the biasbksfd of the
“coins” at each stage, and hence one must also incorpo
the bias tree (which proliferates,2N ). However, it turns
out that this optimal orientation forces the posterior tr
to recombine into two branches, i.e.,

jsn, 6d ­
1
2

µ
1 6

q
1 2 4js1 2 jd cos2sn21d d

∂
,

(15)

where ± corresponds to the outcome of the lastfsn 2

1dthg trial being spin up (+) or down (–). This result ca
be proven by induction as follows. First, forn ­ 1, it
is easily verified thatjs1, 6d ­ js6d as given in (13)
and (14). Next assume that the lastsnthd outcome of the
trial is (–) and that the posterior is given by the abov
jsn, 2d. Then, if the next trial outcome is (+), it follows
from Bayes’ theorem that the posterior distribution, aft
n 1 1 observations, is given by

js· · · 2 1d ­
b1sfdjsn, 2d

b1sfdjsn, 2d 1 b2sfdf1 2 jsn, 2dg
,

with f ­ foptsssjsn, 2dddd. After some algebra, one can
show that the abovejs· · · 2 1d ­ jsn 1 1, 1d. The
other three cases [js· · · 2 2d, etc.] can also be treated
in the same manner.

The weights for different branches do not recom
bine in the quantum case either, however, sin
C

psssjsn, 1d, 1ddd ­ C
psssjsn, 2d, 1ddd; the final average cost

is just C
psssjsn, 6d, 1ddd times the sum of all the different

weights (which is just 1), and hence we finally deduc
that the Bayes cost for sequential observations is

C
psj, Nd ­ C

psssjsN , 6d, 1ddd

­
1
2

µ
1 2

q
1 2 4js1 2 jd cos2N d

∂
, (16)

for either value of thesN 2 1dth outcome (+ or –).
Next consider the case where the physicist treats

entire ensemble as a single composite system. The t
spin of a system withN particles is justNy2, and the
density operator for a spinNy2 particle polarized in the
directionn ­ scosu, sinu, 0d is given by

fr̂sudgmn ­ 22N
p

N Cm N Cn e2ism2ndu , (17)

wheresn, md ­ 0, . . . , N , and N Cm ­ N! ym! sN 2 md!.
According to the result in (8), one must find the eigenva
ues of the matrixr̂2 2 gr̂1 in order to obtain the Bayes
cost. We first calculate the eigenvalues as follows. Defi
two vectorsu ­ hunj andv ­ hynj by

un ; 22Ny2
p

N Cn einu1 (18)
3
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yn ; 22Ny2
p

N Cn einu2 . (19)

Then sr̂1dmn ­ up
mun and sr̂2dmn ­ yp

myn. Since the
inner productu ? up ­ v ? vp ­ 1, one obtains

r̂1up ­
X
n

sr̂1dmnup
n ­ up

and, similarly,r̂2vp ­ vp. Now let w andl be, respec-
tively, an eigenvector and the corresponding eigenvalu
the matrixr̂2 2 gr̂1, i.e.,

sr̂2 2 gr̂1dw ­ lw . (20)

We may expand the eigenvectorw in terms of a basis tha
contains eitherup or vp, i.e., w ­ c1up 1 up

' or w ­
c2vp 1 vp

'. Here up
' denotes some vector orthogon

to up, and similarly for vp
'. However, sincer̂1up

' ­
r̂2vp

' ­ 0, we have

lw ­ c1up 2 gc2vp. (21)

On the other hand, if we form the inner product of the tw
vectorsw ­ c1up 1 up

' andu, we obtain

w ? u ­ c1 ­
c1

l
2

g

l
c2svp ? ud , (22)

and similarly

w ? v ­ c2 ­
c1

l
sup ? vd 2

g

l
c2 . (23)

Without any loss of generality, we may now setc1 ­ 1,
and then by eliminatingc2 from the above equations, w
obtain the eigenvalues of the matrixr̂2 2 gr̂1, i.e.,

l6 ­
1
2

Ω
s1 2 gd 6

q
s1 2 gd2 2 4gsD2 2 1d

æ
,

(24)
where

D2 ­ svp ? ud sup ? vd ­ cos2N sdd . (25)

Therefore, the binary Bayes decision cost for a spinNy2
particle is

Cpsj, Nd ­ 1
2

µ
1 2

q
1 2 4js1 2 jd cos2N d

∂
. (26)

One immediately observes that the above cost (26) is
same as that obtained from sequential analysis, given
(16). Hence the Bayes solution to our optimization pro
lem shows that a combined measurement is as adva
geous as sequential measurements. These two strate
however, are not the only ones, and many other parti
combined measurement procedures are possible. H
ever, in the present formalism of sequential analysis,
only effect of any intermediate measurements, either p
4
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tially combined or not, consists in updating the posteri
distributions. That is, the results of any intermediate me
surements are not directly involved in the final decisio
Since the Bayes cost is a monotonically decreasing fun
tion of the number of updating steps, which can be se
from Eqs. (15) and (16), this implies that any partiall
combined measurements will increase the cost. The
fore, we may now conclude that the optimal measur
ment strategy consists in either performing a combin
measurement of the entire ensemble or performing
quential measurements of the individual particles. An
other strategies will result in higher costs (unless we a
sign different weights to partially combined intermediat
measurements).

This result is quite different from that expected b
Peres and Wootters, who conjectured that sequen
measurements can never be as efficient as a combi
measurement [8]. However, it is important to note th
their conjecture is based upon an information-theore
approach, and the solution of an optimization proble
using a Bayesian approach can yield a different resu
Massar and Popescu [12], on the other hand, have pro
the above-mentioned conjecture explicitly for the ca
N ­ 2. The method used therein is effectively simila
to a Bayesian approach, without the use of the pri
distributions, but with a nondiagonal cost function and a
infinite number of hypotheses. However, when a pri
distribution is available, the Bayes solution is know
to be optimal in general [2]. In our case, the prio
is given to the observer as a part of the experimen
setup; hence the criticism sometimes directed agai
the subjective nature of the Bayesian approach does
apply. If prior knowledge is not available, one can sti
employ the Bayesian approach, using a noninformati
prior. However, the analysis of such cases is beyond
scope of the present Letter.

Throughout the present Letter, we have consider
only the cost associated with making decisions. In a
practical situation, on the other hand, one must take in
consideration other costs (e.g., the observational cost,
cost of analyzing the results, etc.). In our example
sequential analysis, for example, at each stage bef
performing an observation, the physicist must analyze t
previous results in order to determine the optimal turnin
angle. Assuming the linearity of the utility function
(e.g., that the total cost is just the sum of the decisi
cost and the observational costs), one can easily find
optimal strategy in a more general situation. These oth
costs, however, depend upon the specific applicatio
(experiments) concerned and therefore cannot be trea
in a systematic manner.

In connection with the decision problem for classica
coins which was briefly mentioned above, it is interestin
to note that the present quantum binary decision proble
corresponds to a classical problem where the number
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elements in the decision space is infinite. More deta
of this, as well as a treatment including the observation
costs, may be found in [9].

Although we have considered only the binary decisio
problemsM ­ 2d, our result can be extended to the cas
M . 2 if the number of hypothesesM is finite. This can
be seen by introducing Helstrom’s cost reduction alg
rithm [13], where multiple decisions can be reformulate
in terms of binary decisions. However, the validity of ou
result for an infinite number of hypotheses remains to b
proved.
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