
VOLUME 75, NUMBER 6 PHYSICAL REVIEW LETTERS 7 AUGUsT 1995

Fermions Destabilize Electroweak Strings
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Z strings in the Weinberg-Salam model including fermions are unstable for all values of the
parameters. The cause of this instability is the fermion vacuum energy in the Z-string background.
Z strings with nonzero fermion densities, however, may still be stable.
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The recent discovery of cosmic string solutions in the
Weinberg-Salam model of electroweak interactions [1,2]
has fueled a burst of activity in the study of defects
in the standard model and its extensions, and of their
possible consequences for astrophysics and cosmology
[3,4]. The existence of these "electroweak strings, "
which are essentially Nielsen-Olesen vortices embedded
in the Weinberg-Salam model, was previously neglected
because they do not possess topological stability. They
may nonetheless be stable if they sit at a local minimum
of the energy. Because they owe their existence to
energetic rather than topological reasons, the stability of
electroweak strings is sensitively dependent on the field
content and the values of the parameters in the theory. For
example, in a simplified version of the Weinberg-Salam
model containing only bosonic fields, Z strings [2] are
stable only for light Higgs masses (~mz), and for sin Ow

fairly close to unity [5], a region that obviously does not
include the physical world.

Attempts have been made to increase the range of
stability of the Z string by extending the model to include
other fields [3,6,7]. One idea, familiar from the study
of nontopological solitons, is to include particles whose
mass arises from the Higgs mechanism. Such particles
remain massless at the center of the string where the
Higgs field vanishes, and the presence of such particles
at the core would resist the string's dissolution, because
that would increase their energy. Indeed, the presence of
charged scalar bound states was shown to lower the value
of sin20~ for which the string is stable [6].

It has been suggested that a similar enhancement of
stability could be achieved by using fermion bound states
on the Z string [6]. The existence of Z-string zero modes,
fermion states localized on the string with zero energy,
lends support to this idea [8—10]. Another advantage of
this suggestion is that fermions are already contained in
the standard electroweak model.

In this Letter, we show that, on the contrary, the pres-
ence of fermions in the electroweak theory destabilizes
Z strings. More precisely, the lowest-energy (or ground)
state of the Z string is always a local maximum of the en-
ergy functional with respect to (at least) one of the modes
of instability. The Z string is therefore unstable for all val-
ues of the parameters of the Weinberg-Salam model. (It
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where W, and F~, are field strength tensors for the
SU(2)t and U(1)r gauge fields W' and B~, respectively,
and 4 = (&') is the complex Higgs doublet. Each quark
doublet contributes a term
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where W~ = (@&', ) and 4 = irzC&* = ( &.). Each lep-
ton doublet contributes the same term, absent any pieces
containing P+. (We neglect interfamily mixing. ) The
gauge-covariant derivatives in Eqs. (1) and (2) are
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with Y the hypercharge of the field on which the covariant
derivative is acting.

is possible, however, that a higher-energy state of the Z
string, with a finite quark density, could be locally stable. )

This instability results from the fermion vacuum en-
ergy, which also has an important effect on other types
of solitons [11]. One cannot consistently consider the ef-
fects of positive-energy fermion states without also taking
account of the (filled) negative-energy states, particularly
because, with the existence of zero modes, there is no gap
between them. We will show that the contribution to the
energy functional of the filled Dirac sea, i.e., the fermion
vacuum energy, is a local maximum for the Z string.

First, we will describe the fermion spectrum in the
presence of the Z string; then we will show how the
fermion vacuum energy changes under certain small
perturbations away from the Z string. The electroweak
Lagrangian is
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The Z string [2] is the field configuration
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all other fields vanishing, where f(p) and v(
Nielsen-Olesen equations [12]
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with boundary conditions

f(0) = v(0) = 0, f(p): 1, v(p)

(&)

p) obey the
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and normalized by

d'xe fs ' [P + (P'/m f) ] = 1.
(13)

For the neutrino (m+ = 0, 8+ = —1), Eq. (12) has the
simple solution P+ = 1, but by Eq. (7), for p ~ oo,

/+ 0 ~ 1/p, so the zero mode is not normalizable, at
least for a straight infinite string (but see Ref. [9]).
Equation (12) has the explicit solution

P (p) =Ne (14)

7 l 0 (10)

and recalling that P~ = 2(1 —y5)P and P~ = 2(1 +
y~) P~, one may write the zero mode solutions as

f O' V(p')lp') dp' m f(p) ~ (p)et —
( )J'

where g+ = (o), y = (, ), with P (p) obeying the
equation

Recall that Z~ = cosO~ TV3 —sinO~ B~ and n =
Qg2 + g/2

The main question is whether such a field configuration
is energetically stable. One possible mode of instability is
that the upper component @& of the Higgs field may de-
velop a nonzero value, allowing the Z string to unwind.
(There may be other modes of instability as well. ) To de-
termine whether the string is stable to small perturbations
in this direction (in the absence of fermions), one computes
the change in the bosonic field energy

~Eboson[f1] Eboson[fe Ve @i] Eboson[fe Ve 0] ~

(g)
If the Z string is stable, Eb„,„[f, v; 0] is a local minimum
of the energy functional, and AEb„,„[pi]will be quadratic
in Pi with a positive coefficient [2].

Next, we consider the effect of fermions in the elec-
troweak theory. The Dirac equation in the Z string back-
ground has the form

nZ
EB~ Zp ~ pl~ p e ~ = 0,

(9)
ye(ise — ze)Se" —m f(p)e-'~p = 0,

where m~ = G~i1/~2, f~ = (y ~ 1) sin Oiv ~ 1, and
r~ = (y ~ 1) sin Oiv, with y the hypercharge of the
left-handed doublet 'Ij' . This equation has zero-energy
modes [8—10,13], which obey yoysf+ = +P+. Using
the chiral representation for the Dirac matrices

1for the special case y = 0 and cos O~ = 2.
The existence of zero modes generates a 2 -fold

degeneracy of the Z-string ground state, where N is the
number of quark and charged lepton flavors. The ground
state of the string will have the global quantum numbers

1of each fermion fiavor [14], either 2 or —z, depending
on whether the corresponding zero mode is occupied or
not. The occupation of the zero modes will not alter
the Nielsen-Olesen equations (6) for the string profile,
because the fermion source term for the Po and Z@ fields
vanishes for the zero modes.

In the (3 + 1)-dimensional context of the Z string, the
zero-energy solution (11) generates a whole family of
solutions of the Dirac equation

0=,p(p. z. t) = e'"' "="'0=,o(p)

with energies

(16)

These solutions correspond to massless chiral fermions
confined to the Z string; the up-type quarks run up the
string (in the +z direction) and the down-type quarks and
charged leptons run down the string (in the —z direction)
at the speed of light. In addition to these "massless"
solutions of the Dirac equation, there are many "massive"
solutions, whose energies are separated from zero by a
finite gap.

What effect do fermions have on the stability of the
Z string? Earnshaw and Perkins [8] pointed out that
the fermion zero mode provides a nonvanishing source
term in the equation of motion for Pi. This violates the
"Vachaspati existence criterion" [2] and would appear to
imply that the Z-string configuration with Pi = 0 is not
an extremum of the energy. Such a conclusion, however,
would be premature.

The reason that the zero modes are a source for Pi is
that the presence of a nonzero value of @i lifts the degen-
eracy between the ///+ o and P o zero modes, one linear
combination of the zero modes shifting up and the orthog-
onal combination shifting down. The lower eigenstate is
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jeff +boson + ~fermion ~ (17)

where Eb„,„ is the bosonic field energy and Ff„;,„
the fermion vacuum energy in the Z-string background
(i.e., the energy of the filled Dirac sea). The change
AEb»onl Pi] under a small perturbation Pi was consid-
ered above (8); the change in the fermion vacuum energy

filled in the ground state of the Z string, so its descent
lowers the Z-string energy. Before drawing any conclu-
sions about the overall stability of the Z string, however,
we must determine the effect of the @i perturbation on the
rest of the fermion eigenenergies.

The effective energy of the Z-string ground state is

1s

~Erermionl:0'i ] = P ~&+,nl:rt'i]
e+ „&0

+ g 5e „I.gi] + BE[Pi]~ (18)
„&0

where Ae~ „IPi] denotes the shift of the Z-string Dirac
eigenenergies e „under the perturbation, and the sum is
over negative-energy eigenvalues only.

We compute the eigenvalue shifts 6m~ „IP i] perturba-
tively in Pi. Because the perturbation is off-diagonal in
the + and —fields, the leading shift is second order, and
the change in fermion vacuum energy is

I fd'x(G y' y-~+„—G+P P,'„)Pil'
-lbi] =
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with
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L dp
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where we have included only massless intermediate en-

ergy states. Among this subset of intermediate states, a
selection rule ensures that the perturbation only couples
the eigenstates P~ „ to the eigenstate /-

The integral over momenta (20) diverges both in the
ultraviolet and in the infrared. As previously noted,
the ultraviolet divergence is canceled by counterterms;

The sums over intermediate energy eigenstates e
include only positive-energy states; the contributions from
negative-energy intermediate states cancel between the
two sums. The sums in Eq. (19) diverge in the ultraviolet.
The Z string is not responsible for this, because the same
divergence occurs in the usual constant field background.
In that case, the divergence is canceled by adding a
counterterm BE[@i]. The same counterterm will suffice
to render AEr, ;,„[Pi] ultraviolet finite.

Let us evaluate the shifts in eigenenergies correspond-
ing to the massless solutions (15) more explicitly. First,
restrict the perturbation Pi to a constant (complex) value

gg/~2 over the region where the zero mode wave func-
tion (11) is appreciable (but let @i ~ 0 as p ~ oo). Sec-
ond, noting that Efermjon is proportional to the length of
the string (as is Eb„,„), consider a Z string of length L.
Periodic boundary conditions on the fermion wave func-
tions restrict the z momenta to p = 2~n/L. Taking L
large, the sum of the energy shifts of the massless states
becomes

the infrared divergence signals the breakdown of the
perturbative expansion when the energy denominator 2p
becomes smaller than the perturbation g. We redo the
calculation for states with small p, now treating p as
part of the perturbation. The unperturbed states are
now degenerate; degenerate perturbation theory yields the
perturbed energies

p
g

=Q: e=~ p + gA 22gA
+ p

As mentioned above, the degenerate zero mode (p =
0) states are resolved into e = ~lgAI. This improved
calculation yields an infrared-finite result

I A. ( )
I. (4A' ~

lgAI 1 + ln

(23)

dp p' + IgAI' —Iplfermion I-g]

The ultraviolet divergence is absorbed by the counterterm,
leading to a completely finite expression for the change in
the fermion vacuum energy (per unit length) under the
perturbation Pi ..

..„Lg] = L Igl'lnlgl + Cflgl . (24)4~
The coefficient Cf receives contributions from the shifts
of the massive Dirac eigenvalues as well as from the finite
part of the counterterm. Each quark doublet contributes
a term of the form (24) to the fermion vacuum energy
(with different values of A); the charged leptons do not
contribute because their eigenenergies are not shifted by
the perturbation (in the absence of normalizable neutrino
zero modes).
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The change in the bosonic field energy for the pertur-
bation we are considering has the form [2]

boson [g] = blgl (25)

where the sign of Cb, which depends on the parameters
of the model, determines whether the bosonic Z string
(without fermions) is stable in the direction of this
perturbation. Thus, the effective energy of the ground
state of the Z string is

E ff[g] = E ff[0]

+ I. Clgl'+ Igl'»lgl' P IAI'

l quark

(26)

Observe first that Ig I
= 0 is an extremum of this

expression, so even in the presence of fermions the
Z-string configuration (5) with I P i I

= 0 remains a
solution of the equations of motion. This extremum,
however, is necessarily a maximum, regardless of the
value of C. (See Ref. [15] for a similar phenomenon
in two dimensions. ) Hence, the Z string is unstable to
perturbations in @i for all values of the parameters of the
%'einberg-Salam model.

For a Z string of large but finite length L, the fermion
energy (23) becomes a sum over momenta, given by

;.„[g]= —IgAI — »
I

+ y +LlgAI' LA l
2m 277

in the limit g (( 1jL The leadin. g term linear in g can be
canceled by populating both (or neither) zern modes. The
subleading term then contributes energy pei unit length
quadratic in g with a negative coefficient that, diverges as
lnL. Thus, regardless of the bosonic contribt, tion (25),
the Z-string ground state is unstable for large L, the same
conclusion reached above.

This does not mean that no stable nontopological
string configuration exists. A (locally) stable string with

Pt slightly displaced from zero may exist, though that
remains to be demonstrated. What we are saying is
that the simple Nielsen-Olesen string embedded into the
%'einberg-Salam model with all other fields vanishing is
necessarily unstable.

Most attempts to increase the stability of the Z string
do so by increasing the coefficient C in (26); this will
not work here since no coefficient, however positive, can
outweigh the negative curvature at Igl = 0 caused by the

lgl lnlgl term. The only way to overcome this term is
to occupy some of the positive-energy fermion states.
This requires not only a single fermion (as in the case
of nontopological solitons) but rather a finite density of

fermions along the Z string. If the string holds f positive-
energy fermions per unit length of types + and —,the
effective energy will change by

~&[g) =
2

L
gg 2—

)
I.

IgAI 1 + ln
[gA(«2~$ 47r ( lgA I2 )

(27)
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If the Z string carries a nonzero density of quarks of each
flavor, the change in energy will cancel the lgl lnlgl
piece in (26), rendering the total energy proportional
to Igl . A difficult calculation would then be required
to determine the minimum fermion density necessary to
stabilize the state. Even so, the state might only be a
local minimum, liable to decay to a nonstring state via
tunneling or thermal fluctuations.
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