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Renormalized Coupling Constant for the Three-Dimensional Ising Model
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Monte Carlo calculations of the renormalized coupling constant for the three-dimensional Ising model
are reported. Improved estimators both for the second partial of the susceptibility with respect to the

magnetic field and for the correlation length are developed. These estimators show greatly improved
convergence properties, and allow us to compute for system sizes and temperature rather more relevant
to the thermodynamic limit than previously. Our results indicate strongly that hyperscaling holds for
this model.
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The modern theory of critical phenomena has been
troubled since its earliest days when scaling theory was
introduced [1]with the problem of the validity of those re-
lations between the critical indices which involve the spa-
tial dimension. As Stell [2] pointed out, and as was later
incorporated in a theoretical structure by Fisher [3] as the
"anomalous dimension of the vacuum" ~*, the ideas of
scaling and homogeneity are compatible with the replace-
ment of the spatial dimension d by d —co*. Thus the
ideas of scaling alone do not require these "hyperscaling
relations. " We do know, however, as Schrader [4] and
Baker and Krinsky [5] have shown, that co* ~ 0. With
the introduction of the more powerful ideas of the renor-
malization group by Wilson [6], and particularly the field
theory approach [7], these hyperscaling relations became
an integral part of the theory. During the period before
the renormalization group theory (and continuing still),
the only really quantitative method to obtain accurate pre-
dictions of the critical properties was the method of the
analysis of exact perturbation series. Unfortunately, the
best estimates from the high-temperature series showed
just barely resolved violations of the hyperscaling [8].

The key parameter in the renormalization group theory
is the renormalized coupling constant. It is defined (for
zero reduced magnetic field H = pmh, where h is the
magnetic field, m is the magnetic moment, and p = I/kT
with k Boltzmann's constant) as

i12y (K)/8Hzg" = lim g(K) = — lim
rc-tr; tr-tc- ~2(K)se" (K)

'

where K, is the critical value of the inverse temperature
K = p J with 1 the exchange energy, g is the magnetic
susceptibility, and $ is the second-moment definition
correlation length. The value of this constant derived

by the field theory implementation of the renormalization
group [9] is g* = 23.73 ~ 0.02. Recently Tamayo and
Gupta [10] have computed by Monte Carlo methods a
value of g* = 6—7 for the limit as the system size goes
to infinity of g(K, = 0.221655). There is a significant
amount of difference between these two results. Previous
series studies [11,12] had found by series analysis that
the value of g(K) was dropping sharply, as K ~ K„

and suggested that g* = 0. If that result is correct, it
could imply a violation of the hyperscaling relations.
Earlier Monte Carlo studies [13] indicate values declining
below the field theory value as K ~ K, . A special
computer was built [14] to attempt to resolve this issue,
but unfortunately it was built to compute the wrong
quantity [15].

There have been several complicating factors which
have conspired to delay the resolution of this question.
First, it now appears that the effects of the complex
nonanalytic structure of g(K) near K = K, is more severe
than expected from the relatively mild problems observed
in the analysis of the susceptibility. This problem has
disrupted accurate series analysis. Further, the problem
of critical point "rounding" in the finite size theory of
g(K, L), where L is the system size, has only recently
[16] been appreciated. It turns out that (K = K„L =
~) is a point of nonuniform approach. Baker [17] has
demonstrated this effect in the two-dimensional Ising
model through exact calculations on squares of size I
10. There the limits of g(K, L) as K ~ K, and L ~ ~
do not appear to commute. Further evidence on this
point could be the differences between Tamayo-Gupta
[10]results and the field theory results cited above. There
is a further complicating factor. In the three-dimensional
Ising model Baker and Erpenbeck [16] have obtained
good data collapse for g(K, L) (K/K, )' vs s(t)K/ ,L
where gL(K) is the correlation length computed on the
L cube. Their results indicate clearly that computations
using $t /L ~ 0.26 are unsatisfactory for the computation
of the thermodynamic limit and will give values which
are too small. This result throws in question the results
of Ref. [13]. Between these two effects, all the previous
Monte Carlo estimates, of which the authors are aware,
are inadequate to clearly resolve this problem. A further
complication which arises when one tries to reduce
the value of g/L is that cancellations occur in the
computation of r1zg/BH from the subtraction of two
terms which are of order (L/$L)" larger than the answer.
It is for this reason that a calculation [10,16] at K = K,
where $L/L = 0.6 is much easier than for the values
required to give the thermodynamic limit.

994 0031-9007/95/75(6) /994(4)$06. 00 1995 The American Physical Society



VOLUME 75, NUMBER 6 PHYS ICAL REVIEW LETTERS 7 AUGUs~ 1995

(L "3(M )2 —(M )
(Mz)z (2)

Here, ~ =—(M2)/N where M is the total magnetization
and N —= L" is the number of lattice sites. From (2),
it is clear that we have to calculate three quantities: the

In this Letter we report a set of Monte Carlo re-
sults. We have derived new estimators for both $ and
8 ~/BH which have much better convergence proper-
ties. These estimators are key to obtaining our results
without the use of much greater computer resources. We
have obtained results for g(K) for a sequence of tempera-
tures and system sizes such that $/L = 0.1. This value
seems to be small enough to assure that our results agree
with the thermodynamic limit within 1%. We empha-
size that the quantities which we are computing are the
self-same ones calculated by series analysis, and, if one
accepts the renormalization group hypothesis, the ones
calculated by field theory methods. The only difference
comes from the possible systematic error of selecting
g/L ) 0. We conclude that the value of g* is nonzero
and so hyperscaling should hold for the three-dimensional
Ising model. It is probable that g(K) displays an inverted
cusp at the critical point.

For our computations, we used the Swendsen-Wang
algorithm [18] for spin updating. This type of algorithm
has two advantages over the conventional algorithm,
i.e., reduction in the autocorrelation time, and reduction
in the variances of equilibrium distributions of relevant
quantities. As has been reported by several authors [19],
we observed that the cluster algorithm with improved
estimators dramatically reduces statistical errors. It was
reported [20] that cluster algorithms are not much more
efficient than conventional algorithms with multispin
coding technique when only the benefit from correlation-
time reduction is taken into account. We emphasize,
however, that not only reduction of the correlation times
but also use of improved estimators was crucial to
the present work. In fact, our preliminary computation
showed that, for the 64 cube, it was impossible to obtain
results as accurate as the ones presented in this Letter by
means of a conventional algorithm within a reasonable
computational time (- a few months) and within the
given resources, at the temperatures of the present interest.
(Our computations were mainly performed on a cluster of
eight IBM RS/6000 model 590's. But some were done
on a SUN Sparcserver 2000.) As we will show, even for
smaller lattices, it was obvious that the cluster algorithm
performs better.

To extract the full potential of the cluster algorithm, we
reexpressed all the quantities that need to be computed in
terms of improved estimators. Our goal is to calculate the
renormalized coupling constant (1) which is related to the
magnetic moments by

second and the fourth moments of the magnetization and
the correlation length.

It is well known that an improved estimator for the
second moment of magnetization is simply the average size
of clusters [21], i.e. ,

Here, V, is the number of sites in a cluster c. The practical
point of estimators of this type is that the cluster-cluster
terms, which should be zero, are automatically zero, and
do not have to be estimated, which greatly speeds the
Monte Carlo convergence. For the fourth moment of
magnetization, we can derive by the same methods the
corresponding estimator,

(M ) = 3(I /V, I )
—2(yv, ). (4)

For the correlation length, we used [22]

. 2&k' ( y(k))
f(k) =— 4sin

/

—
// 1—

(2)& ~ )

as an approximant to g in the zeroth order with respect
to ~k(. Here ~(k) —= ((M(ak) ( )/N, where M(k) is defined

by M(k) = g„-exp( —ik i )5-„. In the actual calculation,
we formed a linear combination off(k) with the six small-
est possible values of ~k~, which correspond to the nearest
and second nearest neighbors to the origin in the recipro-
cal space, so that the correction term of the second order in

~k~ cancels out in the case where it is isotropic. Therefore,
our approximant is of the second order in 1/L with this
assumption, besides the error due to the finite size effect.
We can express g(k) in a fashion similar to (3) simply by
replacing V, in (3) by V, (k) —=

~ g-„E, exp(ik . r )~. Thus,
we have expressed all the necessary quantities in terms of
improved estimators.

Our simulation consists of N~ independent sets of
runs. Each run is divided into first, N~ sweeps for
equilibration, followed by N~ Monte Carlo sweeps for
measurement. Each measurement sweep is, however,
followed by nR sweeps to improve independence before
the next measurement step. Therefore the total number
of Monte Carlo sweeps performed is Ns[NF + (ng +
1)N~]. Only in the conventional algorithm is it necessary
to take nR ~ 0. In the conventional algorithm, namely,
the item marked by (a) in Table I, NF refers only to the
first coarse grained sample, so the total number of Monte
Carlo sweeps here is just NE + Ns(nq + 1)N~. One
Monte Carlo sweep includes assignments of "deletion" or
"freezing" to all bonds and attempts to Hip all clusters.
The numbers used in our computation are listed in
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TABLE I. The parameters used in the computation and the results. The value K, = 0.22165864 given in [26] was used. All the
results presented are obtained through the cluster algorithm except for (a). The figures in parentheses are one-standard-deviation
estimates for the statistical errors. The rows (a) and (b) are included only for comparison of the conventional algorithm (a) and the
cluster algorithm (b).

8
16
32
64

(a) 16
(b) 16

0.149 05
0.1916
0.2108
0.2180

0.1916
0.1916

7
35
35
28

40
40

1000
2000
2000
1000

70
2000

10000 000
200 000
200 000
100000

20 000
4000

n,R

0.800 05(2)
1.6024(2)
3.2300(5)
6.5843(20)

1.6070(39)
1.6033(14)

45.38(2)
31.90(14)
27.34(16)
25.47(34)
35.5(2.3)
31.9(9)

(K/K, .)'~2g

25.106(11)
25.64(1 1)
25.36(15)
24.85(33)
28.5(1.8)
25.7(7)

Table I. Since the autocorrelation time is, regardless of
the definition, less than 100 [23] up to the system size of
64, the numbers N~ and NM listed in the table are large
enough to exclude systematic error due to autocorrelation.
As mentioned already, the temperature of the simulation
is chosen so that the resulting correlation length becomes
approximately 1/10 of the system size. The actual
value of K, enters our calculations in only a very
minor way. Tamayo and Gupta [10] quote 0.221655,
Ferrenberg and Landau [24] quote 0.221 6595 ~ 26, and
Guttmann [25] using series analysis quotes 0.221 657 ~
12. We have used Rosengren's conjecture [26], K, =
0.221 658 64. For pseudorandom numbers, we have used
the Tausworthe generator.

The results of the simulation are listed in Table I. From
the three data for the system with L = 16, it is obvious
that the present algorithm outperforms the conventional
algorithm (single-spin-flip Metropolis algorithm). The
advantage of the cluster algorithm is more significant for
larger lattices. The results for the 64 cube required about
1100 IBM RS/6000 model 590 h.

In order to assure that we are controlling possible
systematic errors, we have performed exact computations
on the two cube and the three cube at temperatures
which correspond to g = 0.2 and 0.3, respectively. These
results were compared with series expansion results, and
we found that the two cube is about 2.2% below and
the three cube about 0.8% below the infinite systems
series results. In addition, we have compared our very
long run, highly accurate Monte Carlo results for the
eight cube (Table I) with the series results. We find that
it is about 0.2% below the unbiased Pade approximant
(see, for example, [9]) estimate. We conclude from these
comparisons that it is very likely that the systematic errors
are less than 1%, and perhaps much better.

We illustrate our results in Fig. 1. It can be seen that
the central extrapolation of Ref. [12] (which we have
extended by incorporating two more series terms), which
tends to zero, falls well below our present results. We
believe that this method does not properly account for
the leading subdominate behavior. In [17] it was seen
that g* lies above the limit of g(K„L) as L ~ ~ in the

26.0

24.0

CO
CV

o 220

20,0

18.0
0.50

Monte Carlo
O Series analysis

RG value for the NL a-model

0.60
I

0.70 0.80
K/K,

I
' I

I
I
I
I
I

i&',j I

tt

1

I
I

~l
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I . I

0.90 1.00 1.10

FIG. 1. The renormalized coupling constant [times (K/K, .)'s]
vs K/K, The solid line represent. s the series extrapolations
as far as their apparent errors are less than the size of our
dots. The dashed continuation is drawn in to guide the eye.
The symbols $ denote our Monte Carlo results with one-sigma
error bars attached. The symbols are from the same type
of analysis as in the work of Ref. [12]. Cross comparison
with other analyses shows that realistic errors on this series
extrapolation are sufficiently large so as not to exclude our
current Monte Carlo results. The field theoretic renormalization
group value is indicated by ~.

two-dimensional Ising model. In [10]using the histogram
method, it was found that the value of g(K, L) falls very
rapidly to 6—7 as K ~ K, . Combining these results with
ours, we conclude that the value of g* is greater than
zero and so hyperscaling holds for the three-dimensional
Ising model. We definitely expect 25 ) g' )) 6. We
remind the reader of the caution of Nickel [27] who
found nonanalytic corrections to the Callan-Symanzik
beta function P(g) in one dimension, and suggested that
there may also be such in other dimensions which would
adversely effect the quoted error estimates for the field
theory results.

We wish to thank the Advanced Computing Laboratory
for making some computer time available to us. This
work was supported in part by the U.S. DOE and in part
by the University of Tokyo.

996



VOLUME 75, NUMBER 6 PHYSICAL REVIEW LETTERS 7 AvoUsT 1995

*On leave from the Physics Department, University of
Tokyo, Tokyo, Japan.

[1] L. P. Kadanoff, Physics 2, 263 (1966).
[2] G. Stell, Phys. Rev. Lett. 24, 314 (1970).
[3] M. E. Fisher, in Collective Properties of Physical Systems,

Proceedings of the Twenty-Fourth Nobel Symposium
(Academic, New York, 1970), pp. 16—37.

[4] R. Schrader, Phys. Rev. 8 14, 172 (1976).
[5] G. A. Baker, Jr. , and S. Krinsky, J. Math. Phys. (N.Y.) 18,

590 (1977).
[6] K. G. Wilson, Phys. Rev. B 4, 3174 (1971); 4, 3184

(1971).
[7] E. Brezin, J.-C. LeGuillou, and J. Zinn-Justin, Phys. Rev.

D 15, 1544 (1977); 15, 1558 (1977).
[8] W. J. Camp, in Phase Transitions, Cargese 1980, edited

by M. Levy, J.-C. LeGuillou, and J. Zinn-Justin (Plenum,
New York, 1982), pp. 153—267.

[9] G. A. Baker, Jr. , Quantitative Theory of Critical Phenom
ena (Academic, Boston, 1990).

[10] P. Tamayo and R. Gupta (to be published). We are
grateful for permission to cite this work in advance of
publication.

[11] G. A. Baker, Jr. , Phys. Rev. B 15, 1552 (1977).
[12] G. A. Baker, Jr. , and John M. Kincaid, J. Stat. Phys. 24,

469 (1981).
[13] B.A. Freedman and G. A. Baker, Jr. , J. Phys. A 15, L715

(1982).
[14] M. N. Barber, R. B. Pearson, D. Toussaint, and J.L.

Richardson, Phys. Rev. B 32, 1720 (1985).
[15] K. Binder, M. Nauenberg, V. Privman, and A. P. Young,

Phys. Rev. B 31, 1498 (1985).
[16] G. A. Baker, Jr. , and J.J. Erpenbeck, Computer Simulation

Studies in Condensed-Matter Physics VII, edited by
D. P. Landau, K. K. Mon, and H.-B. Schuttler, Springer
Proceedings in Physics Vol. 78 (Springer, Berlin, 1994),
pp. 213-218.

[17] G. A. Baker, Jr. , J. Stat. Phys. 77, 955 (1994).
[18] R.-H. Swendsen and J.-S. Wang, Phys. Rev. Lett. 58, 86

(1987).
[19] For a brief review, see R. H. Swendsen, J.-S. Wang,

and A. M. Ferrenberg, in The Monte Carlo Method in
Condensed Matter Physics, edited by K. Binder (Springer,
Berlin, 1991).

[20] N. Ito, Int. J. Mod. Phys. C 5, 1 (1994).
[21] U. Wolff, Phys. Rev. Lett. 60, 1461 (1988); Nucl. Phys.

8300 [FS22], 501 (1988).
[22] F. Cooper, B. Freedman, and D. Preston, Nucl. Phys.

8210 [FS6], 210 (1982).
[23] J.-S. Wang, Physica (Amsterdam) 164A, 240 (1990).
[24] A. M. Ferrenberg and D. P. Landau, Phys. Rev. B 44, 5081

(1991).
[25] A. J. Guttmann, J. Phys. A 20, 1855 (1987).
[26] A. Rosengren, J. Phys. A 19, 1709 (1986).
[27] B.G. Nickel, in Phase Transitions, Cargese 1980

(Ref. [8]), pp. 291—324.

997


