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Long-Time Evolution of Semiclassical States in Anharmonic Potentials
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We study numerically the one-dimensional quantum evolution of a coherent state when the particle
is bound by a nonlinear force. Snapshots of the Husimi function show that there exist times where the
initial Gaussian distribution in phase space splits into chains of 2,3, ... distributions of similar form.
During their finite lifetime the members of such a string are equally distributed along the classical orbit
which passes through the center of the initial distribution, and they move along this curve with the
corresponding velocity. This effect, which is generic for integrable bounded motion, is explained in
terms of the quantum analogs of action and angle variables.

PACS numbers: 03.65.Ge, 03.20.+i, 03.65.Sq

Although quantum mechanics (QM) is usually formu-
lated in terms of state vectors and operators, it was
discovered more than half a century ago [1] that it is
possible to cast this theory in a form which closely resem-
bles classical statistical mechanics (CM). Nowadays it is
known that there exist infinitely many of such quasiclas-
sical theories which are equivalent to standard QM. The
most famous phase-space equivalents of the density oper-
ator are the Wigner function [1,2] and the Husimi function
[3]; more recently, the latter is favored by many authors
because it is a strictly positive function which makes the
comparison of CM and QM more intuitive [4]. No matter
which formalism is used, both the basic equations and the
examples which can be treated by analytical or numer-
ical methods clearly show two fundamental differences
between QM and CM: (i) Because of the uncertainty prin-
ciple, the set of phase-space representatives of quantum
states is more restricted than the set of classical states [S].
(i1) If one starts with an initial distribution, which can be
interpreted both as classical and as a quantum state, its
evolution in time differs essentially in the two theories,
provided the period of observation is sufficiently long.

In this contribution we discuss the evolution of coherent
states in anharmonic potentials:
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v = o is the infinitely deep square well for which all re-
sults may be obtained in closed form [6]. It suffices to
consider only one-dimensional motion, because the fol-
lowing considerations are easily generalized to integrable
bounded systems with more degrees of freedom. The ef-
fects we are going to discuss can be seen in the evolu-
tion of various time-dependent quantities: wave function,
Wigner or Husimi function, expectation values, correla-
tion functions, etc. We prefer to display snapshots of
the Husimi function for the following two reasons: (i) It
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turned out that the observed patterns are closely related to
the fact that the classical motion takes place on invariant
tori (closed curves in the present case); hence a phase-
space formulation of quantum mechanics is most suited
for explanation. (ii) The rapid oscillations in classically
forbidden regions which are usually observed for Wigner
functions are absent in the corresponding Husimi func-
tions so that essential features common to both functions
are more easily perceived in the latter.

Figure 1 shows the Husimi function

~ 2
Fpoeo(px,0) =| Cpox 1041 po.xo) | ©)

at + = 0: a Gaussian centered at po > 0, xo = 0 whose
width is proportional to /. The closed curves are
contour lines of the Hamiltonian (2), or the classical
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FIG. 1. Plot of contour lines of the Hamiltonian (2) for
v = 4 (quartic oscillator) and the Husimi function (3) at 1 = 0.
The curves H = E(n) correspond to N = 49, 82, and 120,
respectively.
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I(p,x) = I[H(p,x)], (4)

dp dx,

respectively. As time proceeds each part of the initial
distribution seems to move along such a contour line
with a velocity |grad H|. Because of the form of the
potential energy in (2), this speed is larger along the
exterior contour lines than for the interior ones. As a
consequence, the initially symmetrical distribution is not
only shifted along the classical orbits but also stretched
during this motion (see Fig. 2). Classically, this effect
would continue forever and result in a distribution of
increasingly finer spiral form. But it is well known [7]
that classical and quantum evolutions deviate essentially
from each other after a certain time f), which depends on
the initial state, the Hamiltonian, and the magnitude of %
[8]. In the present case this moment is reached when the
fast “head” of the packet and the slow “tail” meet in phase
space and start to interact. The result of this interference
in phase space (see Fig. 3) was described in Ref. [4]
as “creation of small packets,” and from the snapshots
displayed there it was concluded that this nonclassical
structure is “robust,” i.e., persists for all times ¢t > 1.
This is not the case, since the initial state (1) lives
essentially in a finite-dimensional subspace spanned
by eigenfunctions of H = H(p,%) with eigenvalues
E(npin) = E(n) = E(npax) (small components belong-
ing to other energies may be neglected). Therefore only
a finite number of frequencies occur in (3), whence the
evolution is almost periodic and the initial coherent state
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FIG. 2.
(13).

Same as Fig. 1, but ¢+ = 0.037¢; 79, see Egs. (15) and
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FIG. 3. Same as Fig. 1, but 1 = 0.057.

is almost completely restored after some very long period
T. More surprising, however, is the fact that at much
earlier times the Husimi function (3) assumes again and
again highly regular forms, where the original Gaussian
seems to be split into a finite number of “Gaussians” of
smaller amplitude (see Fig. 4). The maxima of such a
string are distributed along the central classical orbit in
such a way that the time needed to proceed from one
maximum to the next one is always the same (To/M, if
Ty is the classical period of the central orbit and M is
the number of peaks in the string). Each of these new
peaks behaves like the initial one: In the beginning of the
formation of the string the individual peaks become more
narrow and increase in height, which corresponds to the
inverse decay of the initial wave packet just before t = 0.
After having reached a maximum of pronunciation the
peaks decay, as did the initial peak immediately after

= (0. While it exists, the whole string rotates along the
central classical orbit with local speed varying according
to | grad H |.

It should be noted that these orbits are not circles, as
would be the case for the harmonic oscillator. Therefore
the expectation values of p and x do not vanish for strings
with odd M but oscillate with a period To/M (cf. Fig. 4).
Because of the common growth and decay of all the
peaks, the amplitudes of these oscillations are modulated
by bell-shaped curves (Fig. 5). Similar conclusions can
be drawn for Fp, . (po,xo,t), the square modulus of the
autocorrelation function, by inspection of Figs. 1-4: In
the beginning it oscillates with period 79. When a chain
of M peaks is present it oscillates with period To/M;
note that here M can be odd or even. Because of
contraction and spreading of the peaks, the amplitudes
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FIG. 4. Same as Fig. 1, but t = 0.207,.

of these oscillations are again modulated by bell-shaped
curves.

All these effects are especially pronounced in the
semiclassical regime where
~ Pmin | < Mmin » 5

| Rmax

Amin > 1,

and hence (n + n')/2 =% > |An| = |n — n'| for all
Amin = 1,7 =< ng.x. Our explanation of the interference
patterns rests on two properties of the Hamiltonian (2):
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FIG. 5. Expectation value (x ) as a function of time. Upper
part: Oscillations reflecting the motion and spreading of the
initial coherent state. Lower part: Oscillations caused by
strings of seven and five peaks, respectively.
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First, consider the functions

Onw(p,x) = (p,x | n)y(n' |p,x), ©)

where | n) is the eigenfunction of A for the eigenvalue
E(n) and | p,x) is the coherent state centered at (p, x).
In the semiclassical limit these functions assume the
following form:

O (p,x) = Cran Ra(l) €2, (7a)
Ri(I) = exp{—(@?/2KE)(I — ak)*}. (7b)

Here E = E(I), @ = w(I), E(I) is the inverse of
the function I[E], w(I) = dE(I)/dI, and I = #Ah.
I =1(p,x) and ® = O(p,x) are the classical action
and angle variables. Equations (7) emerge from numeri-
cal studies, analytical results for the limiting cases v = 2
(harmonic oscillator) and » = oo (square well), and from
a semiclassical analysis [6]. Note that in (7) the Maslov
index drops out in An and becomes negligible compared
to n.

The evolution of an operator | n)(n’ | is given by the
exponential exp[—it[E(n) — E(n’)]/K]. Hence

Fpg,Xo(P?x7 t) = Z Qn’,n(P()’xO) Qn,n’(Pax, t)’ (8)

n,n'

Onn(p,x,1) = Quu(p,x)e MEM=E@VE gy

In numerical calculations this series may always be
restricted to a finite sum (Apin = 1,1’ =< nmayx). In
(8) a pair of terms with n,n’ = ny,n, and n,n’ =
ny,n; represents a real phase-space function which is
concentrated along the curve I(p,x) = h(n; + ny)/2
and has n; — n; nodes on this orbit. During a time
interval ¢ this function is shifted along the curve of
constant action by the angle

0, = 1[E(n1) — E(n2)l/A(n1 — na) , (10

as can be seen from (7) and (9).

The second property of the Hamiltonian which is
needed for the explanation of the interference phenomena
described before is related to the expansion of E(I) around
the mean energy.

E(I) = Ey + w(lo) 81 + 3 w'(Ip) 81> + --- |,

Eo = E(Iy), I =1-1,.
(11)

Iy = I(po, xo0),

It can be shown [6] that for Hamiltonians of the form
(2) and an energy range fixed by the initial coherent state
the higher order terms in (11) may be neglected in the



VOLUME 75, NUMBER 6

PHYSICAL REVIEW LETTERS

7 AUGUST 1995

semiclassical limit. In this case one obtains from (10)

and (11)

O, =t[ag + Boln + ny)l, (12)
ap = w(lp) — &'(I)) Ik, Bo= '(Ilo)h/2.
(13)

Equations (7), (9), and (12) show that all phase-space
functions (9) occurring in the sum (8) which are concen-
trated on the same classical orbit move with the same
angular velocity. It is therefore possible to combine all
terms in (8) with (n + n’)/2 = 7 (integer or half integer)
into a single function of the form

Oi(p,x,t) = Ri(I) An(® — tlag + 2Bon]). (14)

This function has the form of a “profile” [function Aj
with A;(® + 7) = (—1)*"A4;(0®)] which sits on the or-
bit I(p,x) = nk (function R;) and moves along this Bohr
orbit (n integer) or half-Bohr orbit (n half integer) with
constant angular velocity ag + 28p7i. The term « yields
a shift in ® which is the same for all relevant orbits
(Pmin = 7 = nmax); the second term indicates that pro-
files sitting on adjacent orbits move with constant relative
angular velocity. This is similar to classical mechanics,
where the angular velocity () also varies with I; but
combined with the discreteness of the admissible orbits
this fact gives rise to the observed interference patterns.
First, it is clear that at time ¢t = 7¢,

70 = 27/ Bo, (15)

the second term becomes irrelevant, and the initial Gauss-
ian is simply shifted along the central orbit. Next,
consider the time ¢t = 7o/M, M integer: Adjacent pro-
files are now shifted against each other by 7 /M so that
only the profiles (14) with a, n + M, n + 2M, ... add
up in the same angle ® and cancel each other at ® + 7.
Therefore a set of M peaks, equally distributed along the
central trajectory, appears in the graphical representation
of the Husimi function. Compared to the initial peak each
of the new peaks is now reduced in height by a factor
1/M, because the density normal to the orbits is thinned
out by the relative motion of adjacent profiles. This rela-
tive motion also explains why the M peaks contract before
the instant ¢t = 79/2M and decay afterwards.

In a time series of plots of the Husimi function one
will find strings consisting of M packets for all M =
1,..., Mmax, Where My, is determined by the ratio of
the length of the central orbit to the diameter of the
initial distribution. Strings seen in the beginning of the
evolution consist, in general, of almost identical peaks,
whereas at later times the higher order terms neglected in
(12) dissolve the regularity of the fine structure.

This research was supported by the Austrian Science
Foundation (FWF) under Contract No. M0169-PHY.

Note added.— After submission of the paper we dis-
covered that the interference effects considered here are
known in quantum optics as “fractional revival of wave
packets’ [9,10]. The evolution of a localized wave func-
tion into a superposition of such functions, which corre-
sponds to the splitting of a localized Husimi function into
a chain of peaks, was explained in [11] on the basis of
number theoretic considerations. Our approach which is
based on Eq. (7) substantiates the heuristic arguments of
[10] and shows that half-Bohr orbits have to be included
in a satisfactory explanation of the phenomenon.
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