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Stability of Matter in Magnetic Fields
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In the presence of arbitrarily large magnetic fields, matter composed of electrons and nuclei was
known to be unstable if n or Z is too large. Here we prove that matter is stable if o. ~ 0.06 and
Zn ( 0.04.

PACS numbers: 03.65.—w, 11.10.—z, 12.20.Ds, 31.10.+z

where 2 —= ter . (p + A)]z = (p + A)z + o. B is
the Pauli operator. The Coulomb energy is

W K

V, = —Zg P ~, —R, ~-'+
i=1 j=l 1 ~i(j(N

+ Z2 [R; —R[ (2)
1(i&j (K

with Rj being the coordinates of the nuclei and x;
the electron coordinates. The energy unit is 4 Ry =
2mc n, n = e /Itc, length unit = It /2me, and e =
(8m nz) '. Notice that n appears in (1) only through a.

The negative particles are necessarily spin 1/2 fermions
which, for mathematical generality, we assume to exist in

q/2 flavors (e.g., q = 6, corresponding to three leptons).
The ground state energy is denoted by F.

Starting with the 1967 pioneering work of Dyson
and Lenard we now understand stability for arbitrarily
many electrons and nuclei, with B = 0, in the context

One of the remaining unsolved problems connected
with the stability of matter is the inclusion of arbitrary
magnetic fields. The model is a caricature of QED, which
invites speculations about stability of QED for large fine
structure constant u, but that is not our focus here and we
refer to [1] for a discussion of these and related matters.
The Hamiltonian for N electrons and K fixed nuclei
of charge Ze with magnetic field B(x) = V X A(x),
including the field energy, a fB, is

N

H=+2;+ Vc+e B(x) dx, (1)

of the nonrelativistic Schrodinger equation. Later it was
extended to the "relativistic" Schrodinger e uation in
which p /2m is replaced by (c p + m c )' (see [2]
for a review). These proofs also hold with the inclusion
of a magnetic field coupled to the orbital motion of the
electrons, i.e., p ~ p + A, but no Zeeman cr B term.

Stability of matter has two meanings: (i) E is finite
for arbitrary N and K; (ii) E ) Ci(N + K)—for some
constant Ci independent of N, K, and Rj. (ii) obviously
implies (i), and it holds in the nonrelativistic case. In
the relativistic case, (i) actually implies (ii) (see [3]) but
(i) requires two conditions: Zn ( Cz and n ( C3 with

C2 and C3 being universal constants, the best available
values being in [3], Theorems 1 and 2. The inclusion of
B changes E, but the point is that while Cl, C2, C3 depend
on q, they can be chosen to be independent of B.

The situation changes dramatically when the magnetic
moments of the electrons are allowed to interact with the
magnetic field via the cr . B term, as in (1). The reason
for this is simple: The Pauli operator X is non-negative,
but it is much weaker than (p + A) . Indeed, it can
even have square integrable zero modes [4], XP = 0, for
suitable A(x), which cause instability for large Zn2.

It is known [5] that without the field energy term
e f B2 in (1) arbitrarily large B fields can cause arbitrarily
negative energies E even for hydrogen. The field energy,
hopefully, stabilizes the situation, and our goal is to show
that E is finite for (1), even after minimizing over all
possible B fields and all possible RJ.

One of our results on magnetic stability is as follows.
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Theorem I: The ground state energy of H satisfies

F ~ —2.6q max(Q(Z), Q(5.7q) )N' K (3)

with Q(t) =—t + J2t + 2.2, provided that

qZn ~ 0.082 and qn ~ 0.12.

In (2) all the nuclear charges are set equal to Z. As far
as stability is concerned this is no restriction [6], since the
energy is concave in each charge Z~ and hence stability
holds in the "cube" (0 ~ Z~ ~ Z)J i if it holds when all

Z~ = Z. It also follows from this that F. is a decreasing
function of Z. Moreover, since a ~ cv ~, it follows
that F is a decreasing function of o. , a fact that will be
important later. The form of (3) is the best possible for
Z ~ 1, as we know from other studies [2].

Our actual condition for stability given after (18) is
rather complicated, but very much more general than

(4)—which is only representative. The results after (18)
show, e.g. , that when n = 1/137 and q = 2, Z can be as
large as 1050. The large values of Z and o. are important
because the comfortable distance of the critical values
from the physical values Z ~ 92, n = 1/137 implies
that the effect studied here is merely a small perturbation
of the usual 8 = 0 case.

Our proof of Theorem 1 will require a new technique-
a running energy-scale renormalization of X. A byprod-
uct of this is a Lieb-Thirring type inequality for 2:

Theorem 2: If @i ~ ez, . . . ( 0 are the negative eigen
values of 2 —U, for a potential —U(x) ~ 0 then

Prior to our work a proof of type (ii) stability for (1)
with Z = 1, q = 2, and some sufficiently small o. was
announced (unpublished) by C. Fefferman and sketched
to one of us. Our proof is unrelated to his, considerably
simpler and, more importantly, gives physically realistic
constants.

We begin our analysis with the observation that length
scaling considerations suggest that the key to understand-
ing the stability problem is somehow to replace 2, on
each energy scale e, by p, 2 /e, where p, is a fixed energy
but e is variable. On energy scales e ) p, we can use the
fact that 2 ) 0 to replace 2 by p, 2 /e without spoiling
lower bounds. It might seem odd to replace 2 by some-
thing smaller, but what is really happening is that a . B is
being partially controlled by [I —p, e '] (p + A)z. The
idea of replacing 'X by a fraction of 2 was also used in

[1],but no energy dependence was used there.
We shall illustrate this concept by three calculations.

The first, (A), will establish magnetic stability by relating
it to the stability of relativistic matter (see [3,6,8,9]). The
second, (B), will be the proof of Theorem 2. The third,
(C), will use essential parts of the second calculation and
an electrostatic inequality proved in [3] to prove magnetic
stability without resorting to relativistic stability.

(A) Magnetic stability from relativistic stability We.
use stability of relativistic matter in the form proved in

[3]. From the corollary of Theorem 1 in [3] with P = 0.5
we have, for any 0 ( q~ ~ 0.032 and Z~ ~ 1/7r,

I p; + Ail + scVc ~ 0.
l= 1

+le;l ~ a~ U(x) 1 d'x(,3/4 1/4

+ b~l B(x) d x
l U(x) d x (5))

for all 0 ( y ( 1, where az = (2 /5) (1 —y)
and bz = 3' 42 7ry 1 (1 —y) 1 L3 We can take.
L3, defined below, to be 0.1156.

More generally, the second term in (5) can be replaced
by(fB&i )' (fU )'lJ', wherep '+ q

' = 1.
The investigation of this problem started in [1,7] where

type (ii) stability was proved (for suitable Z, n and q =
2) for K = 1 and arbitrary N [if (Z + 1/4)n' 1 ~ 0.15]
or N = 1 and arbitrary K (if Zn ~ 0.6 and n ~ 0.3).
The problem for general N and K was open for nine years,
and we present a surprisingly simple solution here.

The bounds in (4) on Zn and n are not artifacts.
It is shown in [1] and [4] that the zero modes cause
F = —oo when Zn ) 11.11 for the "hydrogenic" atom,
i.e., a single spin 1/2 particle and one nucleus. If the
number of nuclei is arbitrary, it is shown in [7] that
there is collapse if n ~ 6.67, no matter how small Z is.
Magnetic stability, like relativistic stability, implies a (Z-
independent) bound on n

986

+N o —Np N, (h) de. (7)

The crucial step in our proof is noting that the positivity
of the operator 2 implies that 2 ~ p, 2 /e when e ~
p, . Thus 7 ~ p, e '2 ~ p, e '(p + A) —p, e B(x)

(Although Theorem 1 in [3] was stated only for lpl,
it holds for l p + Al because it relies only on the
magnitude of the resolvent, which only gets smaller when
A is not zero. That is, lip + Al '(x, y)l l lpl '(x, y)l
for each s ) 0 and x, y in R . This follows at once
from a similar bound on the heat kernel (exp[ —t(p +
A)z]) (x, y) which, in turn, follows from its representation
as a path integral. This was pointed out in [5,10].
Only the resolvent powers l p + Al ' enter the proof of
Theorem 1 in [3].)

Using (6), H is bounded below by H = g, , h; +
e f B2, where h is the one-body operator h = 2

'l p + Al. Thus F. is bounded below by e f B +
pv/q]

FN, where EN = q ~~=1 ~~ and ~1 ~ ~2 ~ . . . are the
eigenvalues of h. For e ) 0, let N, (h) be the number of
eigenvalues of h less than or equal to —e. Choose p, ~ 0
and note that
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arz's inequality, I~ 'fp + Af ~
1/3)e '~ 2(p + A

( we obtain4/3) ~

K x = h——e '~ B(x) —3e/4 —= e.h (p + A) —
3 e v x

4B(x)
3

N, (h, ) ~ L3 (8)

alculation yieldsnse und in (7), a simple calcuInserting this bound in, a

be estimatedand this can e
1

h ~N, (h), an
-Lich-Rozenblum (CLR) bound [1 ],by the Cwikel-Lich-Roze

w —= max(a, 0) and L3 = 0.1where [a]+ —= max a, a — 1

e K

) is bounded above by

( ) —( — ) ]+ ).&2([B(x) —ye /p, ]+ + x — — e +

'lar fashion and11 in a simi arthe integrand in
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p ~a;( ~ &2L3
00

3/2
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3/2
U ) - (1 - y) ]. d
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(10
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To derive (3), note that W(x) ~ Q ~x —Rj ~

' for x E
I J. Using this bound and replacing I J by R3, one easily
obtains —~2' L3qKQ v ' —Nv as a lower bound
on the —a f W, term in (18). Optimizing over v yields
(3) when X = Xo, I' ~ Yo. In this case, Z ~ Zo =—5.7q.
If X ~ Xo, Y ~ Vo and Z ~ Zo, we get a lower bound
on E by increasing n until X = Xo, Y ~ Yo, this yields
(3) with Q = Q(Z). Otherwise, with Z ( Zo, we use the
Z monotonicity of F. to conclude (3) with Q = Q(5.7q).
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