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In the presence of arbitrarily large magnetic fields, matter composed of electrons and nuclei was

known to be unstable if a or Z is too large.
Za? < 0.04.

PACS numbers: 03.65.-w, 11.10.-z, 12.20.Ds, 31.10.+z

One of the remaining unsolved problems connected
with the stability of matter is the inclusion of arbitrary
magnetic fields. The model is a caricature of QED, which
invites speculations about stability of QED for large fine
structure constant «, but that is not our focus here and we
refer to [1] for a discussion of these and related matters.
The Hamiltonian for N electrons and K fixed nuclei
of charge Ze with magnetic field B(x) = V X A(x),
including the ﬁel}\(} energy, £ [ B2, is

H=ZT,-+VC+sz(x)2d3x, (1)
i=1

where T =[o - (p+ AP =(p + A?>+ o0 B is

the Pauli operator. The Coulomb energy is
N K

VC=—ZZZ|xi—RjI_1+ Z
i=1 j=1 1=i<j=N

+2z2 Y IR — R, ()

I=i<j=K

[x; — le_l

with R; being the coordinates of the nuclei and x;
the electron coordinates. The energy unit is 4 Ry =
2mc?a?, a = e?/kc, length unit = h%/2me?, and & =
(87 a?)~!. Notice that « appears in (1) only through &.

The negative particles are necessarily spin 1/2 fermions
which, for mathematical generality, we assume to exist in
q/2 flavors (e.g., g = 6, corresponding to three leptons).
The ground state energy is denoted by E.

Starting with the 1967 pioneering work of Dyson
and Lenard we now understand stability for arbitrarily
many electrons and nuclei, with B = 0, in the context
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Here we prove that matter is stable if « < 0.06 and

of the nonrelativistic Schrodinger equation. Later it was
extended to the “relativistic” Schrodinger equation in
which p2?/2m is replaced by (c?p? + m?c*)V/? (see [2]
for a review). These proofs also hold with the inclusion
of a magnetic field coupled to the orbital motion of the
electrons, i.e., p — p + A, but no Zeeman o - B term.

Stability of matter has two meanings: (i) E is finite
for arbitrary N and K; (ii)) E = —C{(N + K) for some
constant C; independent of N, K, and R;. (ii) obviously
implies (i), and it holds in the nonrelativistic case. In
the relativistic case, (i) actually implies (ii) (see [3]) but
(i) requires two conditions: Za = C, and a = C3 with
C, and C3 being universal constants, the best available
values being in [3], Theorems 1 and 2. The inclusion of
B changes E, but the point is that while C;, C;, C3 depend
on g, they can be chosen to be independent of B.

The situation changes dramatically when the magnetic
moments of the electrons are allowed to interact with the
magnetic field via the o - B term, as in (1). The reason
for this is simple: The Pauli operator 7 is non-negative,
but it is much weaker than (p + A)?. Indeed, it can
even have square integrable zero modes [4], T ¢ = 0, for
suitable A(x), which cause instability for large Z 2.

It is known [5] that without the field energy term
€ [ B? in (1) arbitrarily large B fields can cause arbitrarily
negative energies E even for hydrogen. The field energy,
hopefully, stabilizes the situation, and our goal is to show
that E is finite for (1), even after minimizing over all
possible B fields and all possible R;.

One of our results on magnetic stability is as follows.
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Theorem 1: The ground state energy of H satisfies
E = —2.6q4"° max{Q(2)?, Q5.7 IN' Pk, (3)
with Q(t) = t + 2t + 2.2, provided that

gZa® =0.082 and ga = 0.12. 4)

In (2) all the nuclear charges are set equal to Z. As far
as stability is concerned this is no restriction [6], since the
energy is concave in each charge Z; and hence stability
holds in the “cube” {0 = Z; = Z}le if it holds when all
Z; = Z. 1t also follows from this that E is a decreasing
function of Z. Moreover, since & « a2, it follows
that F is a decreasing function of «, a fact that will be
important later. The form of (3) is the best possible for
Z = 1, as we know from other studies [2].

Our actual condition for stability given after (18) is
rather complicated, but very much more general than
(4)—which is only representative. The results after (18)
show, e.g., that when @ = 1/137 and ¢ = 2, Z can be as
large as 1050. The large values of Z and a are important
because the comfortable distance of the critical values
from the physical values Z = 92, a = 1/137 implies
that the effect studied here is merely a small perturbation
of the usual B = 0 case.

Our proof of Theorem 1 will require a new technique—
a running energy-scale renormalization of 7. A byprod-
uct of this is a Lieb-Thirring type inequality for 7 :

Theorem 2: Ife; = €3,... < 0 are the negative eigen-
values of T — U, for a potential —U(x) < 0 then

leil = ayf Ux)? d3x

+ b7<f B(x)? d3x)3/4 (f U(x)* dax)l/4 ®))

for all 0 <y <1, where a, = (2%?2/5)(1 — y)"'Ls
and b, = 31/4279/4 7y =3/8(1 — 5)"3/8L5. We can take
L3, defined below, to be 0.1156.

More generally, the second term in (5) can be replaced
by ([ B*/%)Va (fUr)/?, where p~! + g7! =

The investigation of this problem started in [1,7] where
type (ii) stability was proved (for suitable Z, o and g =
2) for K = 1 and arbitrary N [if (Z + 1/4)a'¥7 = 0.15]
or N = 1 and arbitrary K (if Za? = 0.6 and o = 0.3).
The problem for general N and K was open for nine years,
and we present a surprisingly simple solution here.

The bounds in (4) on Za? and « are not artifacts.
It is shown in [1] and [4] that the zero modes cause
E = —oo when Za? > 11.11 for the “hydrogenic” atom,
i.e., a single spin 1/2 particle and one nucleus. If the
number of nuclei is arbitrary, it is shown in [7] that
there is collapse if & > 6.67, no matter how small Z is.
Magnetic stability, like relativistic stability, implies a (Z-
independent) bound on «.
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Prior to our work a proof of type (ii) stability for (1)
with Z = 1, ¢ = 2, and some sufficiently small « was
announced (unpublished) by C. Fefferman and sketched
to one of us. Our proof is unrelated to his, considerably
simpler and, more importantly, gives physically realistic
constants.

We begin our analysis with the observation that length
scaling considerations suggest that the key to understand-
ing the stability problem is somehow to replace 7, on
each energy scale e, by w7 /e, where u is a fixed energy
but e is variable. On energy scales ¢ > u we can use the
fact that 7 > O to replace 7 by uT /e without spoiling
lower bounds. It might seem odd to replace 7 by some-
thing smaller, but what is really happening is that o= - B is
being partially controlled by [1 — e '](p + A)?>. The
idea of replacing 7 by a fraction of 7 was also used in
[1], but no energy dependence was used there.

We shall illustrate this concept by three calculations.
The first, (A), will establish magnetic stability by relating
it to the stability of relativistic matter (see [3,6,8,9]). The
second, (B), will be the proof of Theorem 2. The third,
(C), will use essential parts of the second calculation and
an electrostatic inequality proved in [3] to prove magnetic
stability without resorting to relativistic stability.

(A) Magnetic stability from relativistic stability.—We
use stability of relativistic matter in the form proved in
[3]. From the corollary of Theorem 1 in [3] with 8 = 0.5
we have, for any 0 < gk = 0.032 and Zkx = 1/,

N
D lpi + Ail + kVe = 0. (6)

i=1

(Although Theorem 1 in [3] was stated only for |pl,
it holds for |p + A| because it relies only on the
magnitude of the resolvent, which only gets smaller when
Aisnot zero. Thatis, ||p + A7 (x,y)| = |1p|™* (x,)|
for each s > 0 and x,y in R3. This follows at once
from a similar bound on the heat kernel {exp[—¢(p +
A)?T} (x, y) which, in turn, follows from its representation
as a path integral. This was pointed out in [5,10].
Only the resolvent powers | p + A|™¢ enter the proof of
Theorem 1 in [3].)

Using (6), H is bounded below by H = 3~  h; +
e [B?, where h is the one-body operator h = T —
k!Ip + A|l. Thus E is bounded below by & [ B> +
Ey, where Ey = ngi/]q] gjand g1 = g, = ... are the
eigenvalues of . For e > 0, let N_.(h) be the number of
eigenvalues of % less than or equal to —e. Choose u > 0
and note that

Ey=—-Nu — q[ N_.(h)de. (7)
"

The crucial step in our proof is noting that the positivity
of the operator T implies that 7 = u7T /e when e =
u. Thus T = pwe 'T = pe '(p + A)? — pe 'B(x)
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when e = u. By Schwarz’s inequality, «™'|p + A| =
(1/3)e 'k~ 2(p + A)?* + 3e/4 and hence if we set u =
(4/3)k ~% we obtain

h=e 'k 2(p + A? — 2e 'k 2B(x) — 3e/d = h,.
p 3

Thus N_.(h) = N_.(h.), and this can be estimated
by the Cwikel-Lieb-Rozenblum (CLR) bound [11],

ie, NoJ(p+ A2~ U] =Ls [lUK) — ]}’ dx,
where [a]+ = max(a,0) and L3 = 0.1156. In our case

2.2 3/2
N_,(h,) = L3[[4B(x) - —e——i} Px. (8
3 4 .

Inserting this bound in (7), a simple calculation yields
Ev=—-Nu — (277'/3)61;(—1L3jB(x)2 d*x .

We choose k so that the field energy terms are non-
negative, i.e., k = (1672/3)Lsa’q = 6.1a%q. We con-
clude, by (6), that magnetic stability holds if

ga = 0071 and ¢gZa® = 0.052. )
For g = 2, the first condition is @ = 1/28. For g = 2
and a = 1/137, stability occurs if Z < 490.

Assuming (9) holds, we then use (6) and choose
x = min{0.0315¢~ !, (#Z)~!}. Our lower bound on the
ground state energy per electron, by this method, is then
—u = —(4/3)x"? = — max{1345¢2,13.22%}.

Remark: We used the CLR bound in (8). Since the
derivation of this bound is not elementary, the reader
might wish to use an easier to derive bound—at the cost
of worsening the final constants. A useful substitute is

N_, = 0.1054e"/4f[U(x) — /21" dPx

(plus an increased w), which is in (2.8) of [12] and which
can be derived by means originally employed for the Lieb-
Thirring inequality. This same remark also applies to our
other calculations below.

(B) The Lieb-Thirring inequality.—As before we
note that > & = — [ N_o(T — U)de. We write
/. g = [ o+ S ; The parameter u will be optimized be-
low. Noting that 7 = (p + A)> — B(x) and applying
the CLR bound in the same fashion as before to [} yields

L; j;)ﬂ ][B(x) + Ux) — e]i/2d3x de . (10)

In [ Z we replace 7 by the lower bound
we '[(p + A2 — B(x)] and obtain N_.(7 — U) =
N_.(ue '[(p + A)? — B] — U). A further application
of the CLR inequality yields the bound on | i

L. f: [ [BG) + (e/pUG) — e2/uT>dxde. (1)

It is easy to see that for any O < y < 1 the integrand in
(10) is bounded above by

VE(BG) — yeX/ull? + [UG&) — (1 — yelD.

Treating the integrand in (11) in a similar fashion and
combining the inequalities we find

S led = VEes [ [ B0 = ye/uTl ae
+ fM[U(x) — (1 = y)el* de
0

+ [ elmue - 1 = pe/unl? def d*x.
"

After extending the last two integrals to || i, a straight-
forward computation yields

leil = \/§L3f{5—(~1——2:~’;5 U(x)%? +

3
128

377/“"1/2
16y1/2

w0 = ) PUws

B(x)?

Optimizing over u yields (5).

To prove the more general form of (5), replace ue™
by (ue™!)*, where s = 2p/3 — 5/3.

(C) Proof of Theorem I.—We turn now to our third
illustration of the concept of running energy scale and
prove the stability directly, not relating it to the relativistic
problem. By this method we get the correct dependence
of the ground state energy on Z and also somewhat better
critical constants than in (9).

Following [3] we first replace the Coulomb potential
by a single particle potential in (12) below. We break
up R? into Voronoi cells defined by the nuclear locations,
ie, I'; ={x : |x — Rj| = |x — Ryl for all k} is the jth
Voronoi cell. Each I'; contains a ball centered at R; with
radius D; = min{|R; — Ryl : j # k}/2.

The following bound on V¢ is proved in [3]: Choose
some 0 < A < 1. Then

1

K 22

eyl (12)
j=1 8Dj

N
Ve=—> W) +
i=1

where W(x) = Z|x — R;|™! + F;(x) for x € T'; with
F(x) defined by

2Dy)™'(1 = D %lx — R;»)™" for Ix — R;| = ADj,
(V2Z + 1/2)|x — R;I™" for|x — R;| > AD;.

The point about this inequality is that the potential W has

the same singularity near each nucleus as V¢, and that

the rightmost term in (12) is repulsive. This term will be
responsible for stabilizing the system.

987
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The problem is thus reduced to obtaining a lower bound
on g¢>'e;, where Y'¢; is the sum of the first [N/q]
negative eigenvalues of 7 — W. Note that Theorem 2
cannot be applied directly to this problem, since W is
neither integrable to the power 5/2 nor to the power 4.
Instead we have to do the calculations directly.

For v > 0 (a number that is chosen later) set W, (x) =
[W(x) — v]+ and note that W(x) — v = W,(x). Then,
as in (7), ¢ e; = —Nv — q [y Noo(T — W,)de.
Again,

j:N_e(T— W,,)deSj;# N_.(T —W,)de

+f N_o(pe T —W)de, (13)
“m

where we have replaced W,(x) by W(x) in the second
term. Applying the CLR bound to the first expression
on the right side we obtain L3 [ [§'[B(x) + W,(x) —

e]i/2 de d3x, which can be bounded, as in part (B), by

o f [ o]

+ %(1 — y)‘lwy(x)5/2}d3x, (14)

forany 0 < y < 1.

The difficulty in dominating the second term in (13)
comes from the Coulomb singularity of W (x), which is not
fourth power integrable. The singularity can be controlled
using the following operator inequality, which follows
from the diamagnetic inequality [|(p + A)y|>d*x =
[ |pl¢||? @*x and Lemma 2a on p. 708 of [13].

4 Z2/4 + > ZR™', if|x] =R
+ AR - L= —{ > ZR™, ,
(P + A" =1 ZIx| 1, if x| = R.

Choose R = AD; and write (p + A)> = B(p + A)?* +
(1 — B)(p + A)? for some 0 < 8 < 1. Then, by scal-
ing,
(w/e)T — W = (u/e)(1 = B)(p + A)?
— (n/e)B — W,
where V;(x,e) = Gj(x,e) + Fj(x) for x € T'; with
Gj(x, e) defined by
Z%e/4Bu + 3Z/2AD; for|x — R;| = AD;,
Zlx — R;|”! for |x — R;| > AD;.
Note that W depends on e.

Again, as in part (B), we can use the CLR bound on the
second term in (13) to obtain (when 1 — y = Zz/4,8,u,)

V2Ls(1 — B) 732 "B — vyt /ull?d
-8 f{fﬂ [BG) — ye?/ull? de
+ ,u"3/2f [eﬁ/(x,e) -1 - )/)62]3+/2 de}d3x.
0
(15)
988

First we compute the last integral in (15), which is

K oo
Zj f [eG(x,e) + eFj(x)
=/ Jo
-1 - y)ez]i/z de d’x .
Now split the I'; integral into an inner integral |x —

R;j| = AD; and an outer integral |x — R;| > AD;. The
inner integral yields, using the definitions of G; and F;,

377'2 72 -5/2 A 1
- 1 — —_ J—
32 ( Y 4B,u> ./0 [2(1 - r2)

3z 7 2 ~1
+ ﬁ} r erj .
(16)

To bound the outer integral from above we replace I'; by
R3 and get

(Bw2/32)(1 — ») 2PNz + 41728 aD)~".  (17)

Combining (14)—(17) we find that the sum of the negative
eigenvalues of 7 — W, is bounded below by

K
—aj W, () dx — bj B(x)*d*x — ¢ Z D;'.
i=1
(18)

Here a = q(2v/2/5)L;(1 — y)7!,

b= ‘J¥L3(1 - B (w/)'",
c=gq 37222\/5 Ly(1 — )23
NZ+ VTl (. 2\
X{ A(l — y)3/2 " <1 Y 4,3,u>

A 4
q 32} 5 }
x 1 42z .
fo [4(1 oy T

To simplify the stability condition we have artificially in-
creased the bounds by recalling that ¢ = 2 and twice re-
placing 1/2 by g /4 in the definition of c. We choose B8 =
1/8, y = 1/2, A = 8/9, and u so that b = (8ma?)™ L.
The stability condition ¢ = Z?/8 [see (12)] now depends
only on the two parameters X = gZa? and Y = ga. A
straightforward but lengthy calculation shows that the sta-
bility condition holds if X = Xy = 0.082 and Y = Yy =
0.12. The condition is monotone in Y, so it holds for
X = Xop,Y = Yy. Although our condition does not hold
for all X = Xo,Y = Yy, we can use the Z monotonicity
of E to conclude stability in this range; this proves (4).
With the same values of 8, 7y, and A and with g = 2 the
values Z = 1050, « = 1/137 also give stability.
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To derive (3), note that W(x) = Qlx — R;|™! for x €
I';. Using this bound and replacing I'; by R3, one easily
obtains —+/2 72L3gKQ3v~"/? — Nv as a lower bound
on the —a [ W3/? term in (18). Optimizing over » yields
(3)when X = X,Y = Yy. Inthiscase, Z = Zy = 5.7¢q.
If X =Xy, Y =Yyand Z = Zj, we get a lower bound
on E by increasing a until X = Xy, Y = Y); this yields
(3) with Q = Q(Z). Otherwise, with Z < Z,, we use the
Z monotonicity of E to conclude (3) with Q = Q(5.79).
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