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Proportion Regulation of Biological Cells in Globally Coupled Nonlinear Systems
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Globally coupled activator-inhibitor systems are studied as a model of the regulation of cell proportion
in biological differentiation. Formation and destabilization of one- and two-cluster states are predicted
analytically. Numerical simulations show that the proportion of units in clusters falls within a finite
range determined by the initial conditions.
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The regulation of the proportion of different cell types
in a tissue is a general and important aspect of biologi-
cal development. The proportion of the two different cell
types is roughly constant irrespective of the slug size of
cellular slime mold Dictyostelium discoideum (Dd) [1—4].
Though initially the same Dd cells, when dissociated, ran-
domly mixed, and reaggregated, indifferently differentiate
into two cell types (prespore and prestalk cells) without
forming a spatial pattern. Cell differentiation is indepen-
dent of cell position, while later cell sorting forms the
two-zoned prestalk-prespore pattern typical of slugs of Dd
[3—5]. Similar regulation can be observed in caste popu-
lations of social insects such as ants and bees [6,7], where
the proportion of worker types is independent of the size
of the colony and recovers after manipulation by the ex-
perimenter.

No theoretical model exists to describe proportion reg-
ulation. Pattern formation models such as the Turing
instability with diffusive coupling [8] are incompatible
with the observation that the Dd cells start to differ-
entiate independent of their positions. Instead, a large
population of identical units interacting identically (a
globally coupled nonlinear system) is a good candidate to
describe the phenomenon. Global coupling is an ide-
alized model of the case, when the diffusion length of
a chemical factor, e.g. , differentiation inducing factor
(DIF) or pheromone, is very large compared to the cell
size, or when the individual units move around to inter-
act with others.

Globally coupled chaotic maps [9,10] and globally cou-
pled oscillators [11—15] display clustering and destabi-
lization. However, a description of the cluster state is
difficult because the unit itself is complex. Chaos, oscil-
lations, or excitability probably do not play essential roles
in biological proportion regulation in Dd. In this respect,
a simpler model of clustering is preferable.

Our globally coupled model is composed of
activator-inhibitor units with two variables u and V.
Each quantity is considered as a concentration of
morphogen in each cell which activate s or inhibits
the differentiation process such as cyclic adenosine
3'-monophosphate (cAMP) or ammonia [16]. The
dynamics is

u, = au, —bv, —u, + IC}(u —uj),

vj = cuj dvj + E2(v vj),

tu; and v=y g, &
v;. Thecom-1 pf 1

ponents u~ and v~ of the jth unit function as activator
and inhibitor, respectively, if a, b, c, and d are positive.
Each unit couples to all other units through the averaged
fields u and V. K] and Kz are the non-negative sus-
ceptibilities of each component, since this type of global
coupling corresponds to the limit of fast diffusion.

First, we investigate the properties of individual units
by setting K& = K2 = 0. Depending on the parameter
s = ad —bc, the number and the stability of the fixed
point changes. The linear stability of these fixed points
can be analyzed by setting u = up + 68,v = vp + 6v,
[6u[, ~6v( && 1, and Bu = Buoe ', Bv = Bvoe '. Lin-
earization of (1) leads to the eigenvalue equation

0 = A —(a —d —3uo)A —s + 3duo.

The fixed point (uo, vo) is stable if the conditions 0 )
a —d —3up and 0 ~ —s + 3dup are satisfied. We will

2 2

assume that a & d and s & 0 from now on. In this case,
the trivial solution (0, 0) is the unique attractor for a single
isolated unit.

Let us consider a one-cluster state in which every unit
has the same value (u(~}, v(~}), i.e.,

(u, v ) = (u(}},v(}}), J' = 1, . . . , N .

Analyzing the stability of the cluster in the globally
coupled system is difficult because we must solve the
eigenvalues of a 2N dimensional matrix. However, we
can determine easily a sufficient condition for cluster
destabilization. First, N units are assumed to form an
M-cluster state ((u~;},v(;})), i = 1, . . . , M. Next, we
consider one additive unit (test unit) (u(t), v(t)) in that
M-cluster state and approximate the effect on the test
unit from the other N units is simply external force.
This approximation is justified in the limit W ~ ~. The
stability of this test unit determines the stability of the
original M-cluster state as follows. Noting that the
test unit has at least M "entrained" solutions for each
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cluster, i.e., (u(t), v(t)) = (u(;), v(;)), the linear stability
of these entrained solutions can be analyzed. If one of
the entrained solutions is unstable, we conclude that the
original cluster state is unstable. We call this stability
analysis a test unit analysis (TUA) [17].

Now, we carry out TUA for a one-cluster state {(0,0)),
i.e., we consider the stability of a test unit (u(t), v(t))
subject to the force created by the N units in the one-cluster
state. In this case, both of the average fields u and v vanish
and the equations for the test unit become

200

u = (a —Kt)u —bv —u,
(3)

0.2

v = cu (d + K2)v .

The fixed points of the test unit can be obtained by setting
u = v = 0. u satisfies

0 = hi(u) —= (d + Kz)u + [(d + K2) (Ki —a) + bc))u.

Note that hi (0) = 0 because the test unit has the entrained
solution (u, v) = (0, 0). To investigate the stability of the
one-cluster state, we analyze the test unit's linear stability
around the entrained solution (0, 0). Linear stability anal-
ysis of (3) yields the eigenvalue equation

0 = A —(a —d —Ki —K2)A

—(a —Ki) (d + K2) + bc. (4)

The stability conditions for the entrained solution of the
test unit in the one-cluster state are now given as

0 ) a —d —Ki —K2,

0 ( —s —aK2 + Ki(d + K2) .

(5)

From the condition for existence and stability of one-
cluster solutions in the uncoupled case, (5) is automatically
satisfied. Therefore the critical condition for stability
occurs when the right hand side (RHS) of (6) equals
0, where a pitchfork bifurcation occurs. Although this
stability condition is for the entrained solution of the test
unit, it is obvious that the original one-cluster solution
is unstable if (6) is violated. Thus the one-cluster state
is linearly unstable when E2 ) K2, . Figure 1 shows
the result of numerical simulations for E2 ( K2, using
a simple Euler method with dt = 0.01. Parameters are
N = 100, a = 0.4, b = 1, c = 0.5, d = 1, Ei = 0, and
K2 = 0.2. A one-cluster state [Fig. 1(c)] results from a
uniform random initial condition Fig. [1(b)]. When Kz )
K2„ the one-cluster state becomes unstable and each unit
separates into two subpopulations, i.e.,

(u(i), v(i)) foi' i = 1, . . . , N(i),
(u(2), vg)) for i = N(i) + 1, . . . , N .

Here, N~i~ is the number of units which belong to the first
cluster. This state is defined as a two-cluster state.

Assume Ki = 0. Consider a two-cluster state
(u(i), v(i)), (ug), vg)) with proportion p: 1 —p, where
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p —= N(i)/N and 0 ~ p ~ 1. The averaged fields u and
v become pu(t) + (1 —p)u(2) and pv(i) + (1 —p)vg),
respectively. Eliminating v~i~ and vg~ and transforming
from (u(i), ug)) to (u(i), P), where @ —= u(2)/u(t), yields
an equation for @:

(Q —1) [bcK2(I —p)P —s(d + K2)P
—s(d + Kz)P + bcK2p]] = 0.

Note that P = 1 implies u(i) = ug), i.e. , a one-cluster
state. The solution must satisfy the inequality u(1) ~ 0
Therefore the condition for the existence of a two-cluster
state is

K2 ) K2, =——s/a.
Under the condition (7), we use TUA again to analyze

the stability of the two-cluster state, i.e., we consider the
stability of a test unit entrained solution to the external
force created by the N units in the two-cluster state. The

FIG. 1. (a) Temporal evolution of the distribution of units
with respect to u. The gray scale shows the number of units:
white representing 0 and black N. Randomly distributed units
aggregate into the origin, and a one-cluster state is formed. (b)
Initial distribution. Each unit has a uniform random number
between —0.1 and 0.1 for u and v, respectively. (c) Snapshot
of a one-cluster state at T = 200.
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test unit equations are

~=au —bv —u,3

v = cu dv + K2[pv(i) + (1 —p)v(21 —v].

500
(a)

There exist two entrained solutions for the cluster,
(u(i), v(il) and (u(z), vg)). To investigate the stability
of the two-cluster state, we analyze the test unit's lin-
ear stability around the entrained solution (u(i), v(i)).
Linearization around (u(i), v(i)) leads to the eigenvalue
equation

0 = A —(a —d —Kz —3u(&l)A

—(a —3u(, )) (d + Kz) + bc.

0 ~ 1(aK2 + s) [(2ad —3bc)K2 + 2ds] (d + K2p))

(9)X t —9bcKzp + 2(ad + 3bc)K2 + 2ds).

The first term on the RHS of (9) is positive definite, and
the second term determines its stability. The bifurcation
line is given by solving it for p, i.e.,

2 dS
p = p. (Kz) = + (ad + 3bc) ~,9bc K2 ) (10)

The entrained solution becomes unstable if the constant
term in (8) becomes 0. The stability condition is
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FIG. 3. (a) Evolution of the distribution with respect to u.
Units around the origin separate into a two-cluster state. (b)
Initial distribution. Each unit has a uniform random number
between —0.01 and 0.01 for u and v, respectively. (c)
Snapshot of the two-cluster state at T = 500.

where a transcritical bifurcation occurs. For ex-
ample, p, = 7.6/9 —0.2/4. 5K2 for the case
a = 0.4, b = 1, c = 0.5, d = 1. A typical phase
diagram is shown in Fig. 2. For K2 ( K2„no two-
cluster solution exists. For K2 ) K2„one of the
two-cluster solutions with a proportion within region 8
is realized. The two-cluster state in region C is linearly
unstable and is not realized. The bifurcation diagram
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FIG. 2, Typical phase diagram of one- and two-cluster states.
The upper line is given by (10) and the lower line denotes
1 —p, . The dotted line is K2 = K2, . In the region A, there
is no two-cluster solution. In 8 and C, a linearly stable and an
unstable two-cluster solution exists, respectively.

is symmetric around p = 0.5 because the proportion
of the other cluster is 1 —p. Therefore the possible
proportion has a minimum p~;„= 1 —p, (K2) and
maximum p „=p, (K2) for a given K2. To investigate
the dynamics of destabilization we perform numerical
simulations. Figure 3 shows the formation of a two-
cluster state from a uniform random initial condition with
K2 = 0.3 ~ K2, . Other parameters are as in Fig. 1. At
T = 500, a two-cluster state is selected with proportion
p: 1 —p = 49: 51. In Fig. 4, the proportion regula-
tion under artificial partial extinction is shown. We start
with a relaxed state of the previous simulation [shown
in Fig. 3(c)] removing the 49 units which belong to the
cluster with negative u value [hatched in Fig. 4(a)]. The
remaining 51 units reform a two-cluster state with the
proportion p: 1 —p = 23: 28 falling in region B.
Three or more cluster states have not been observed.

To clarify what selects the final proportion, we perform
numerical simulations of Eq. (1) with changing initial
conditions. Parameters are the same as in Fig. 1 except
that K2 = 0.5. We start from 500 initial conditions which
are uniform random numbers between —0.1 and 0.1 with
different seeds. Figure 5 shows the distribution of final
proportions, which peaks at p = 0.5, showing that the
initial condition determines the proportion.
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CD

E

500 d = 1, EI] = 0, E2 = 3, and e = 0.2. From this result
we conclude that the proportion regulation phenomenon
discussed in this Letter is generic.

The authors wish to thank N. Nakagawa, Y. Kuramoto,
and Y. Sawada for many fruitful discussions.
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FIG. 4. (a) Evolution of the distribution. After a sudden
decrease for u of each unit to zero till T —10, 51 units separate
into two clusters again. (b) Initial distribution. 49 units in the
hatched cluster are removed. (c) Snapshot at T = 500. The
final proportion p: 1 —p = 23: 28.

Finally, we check the structural stability of these results
by adding a small positive constant term e, i.e.,

u~ = au~ —buj —u + Kt(u —ul),

vj = cu~ dtj~ '+ K2(v vl) +

Numerical simulation shows that the distribution of pro-
portion also has a finite width. The most probable pro-
portion, however, moves from 0.5 because the added
term e breaks the symmetry of (1) [18]. For example,
the most probable value is about 0.25, p;„—0.1, and

p „—0.4, respectively, when a = 0.6, b = 1, c = 2,
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FKJ. 5. Probability distribution of proportions of two-cluster
states for 500 randomly chosen initial conditions.
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The condition given by the TUA is only a sufficient
condition for the destabilization of the original cluster
state and is not a necessary condition. There is an example
in which the original cluster state is unstable even if the
TUA is stable. Consider the following globally coupled
system: u, = u, —u, + It(u —u, ). Although the fixed
point u, = 0 is unstable to the perturbation that every
unit moves in the same direction, the solution entrained to
0 of the test unit is stable so as to K ) 0. The relation
between the stabilities of the entrained test unit solution
and the stability of the original cluster state remains a
further problem.
The added term e also changes the bifurcation type
between the one- and two-cluster states. Coexistence of
the one-cluster solution and the two-cluster solution occurs
to some range of K2.
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