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Viscosity and Structural Relaxation in Suspensions of Hard-Sphere Colloids
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Viscometry and dynamic light scattering (DLS) were used to study suspensions of colloidal particles
which interact like hard spheres. The rate of "structural relaxation" of microscopic density fluctuations,
indicated by the long-time diffusion coefficient measured by DLS at the peak of the static structure
factor, was found to vary with particle concentration quantitatively like the inverse of the low-shear-
rate viscosity. Sample concentrations were calibrated with respect to the thermodynamic "freezing"
transition of the suspension.

PACS numbers: 82.70.od, 83.10.Pp

By viscometry and dynamic light scattering (DLS) we
have studied suspensions of colloidal particles, which
interact like hard spheres, in the range of volume fractions
0 ~ P ~ 0.494. Sample volume fractions were calibrated
directly with respect to the thermodynamic hard-sphere
disorder-order transition at @F = 0.494 [1], where the
suspension freezes to a colloidal crystal. The low-shear-
rate viscosity of a suspension at freezing was found to be
—50gp, where gp is the viscosity of the solvent. Diffusion
was studied using the new technique of two-color dynamic
light scattering, which gives good discrimination against
multiple scattering (so that complications associated with
the use of solvent mixtures for refractive index matching
are avoided). We found that the rate of relaxation of
microscopic density fluctuations ("structural relaxation" )
scales like the inverse of the viscosity for all volume
fractions studied up to freezing. To be specific, our results
show that

Dp
(1)

D~(Q ) no
Here Do is the low-concentration (Stokes-Einstein) dif-
fusion constant of the particles, DL(Q ) is the diffusion
coefficient describing the long-time decay of density fluc-
tuations that have wave vector Q corresponding to the
main peak of the suspension's static structure factor, and

g is the low-shear-rate viscosity of the suspension. While
structural relaxation and inverse viscosity might be ex-
pected to show similar dependences on concentration, what
is unexpected, and suggestive, about our findings is the
identity, to within relatively small experimental uncertain-
ties, expressed in Eq. (1) and displayed in Fig. l.

The particles used in these experiments comprised cores
of polymethylmethacrylate (PMMA) stabilized by thin lay-
ers of poly-12-hydroxystearic acid. They were suspended
in cis-decalin. Previous work on similar systems has
shown that the interaction between the particles is well
approximated by that of hard spheres [2,3]. Precise de-
termination of the volume fraction of suspensions of this
type is complicated by the core-shell structure of the par-
ticles. Thus, as in previous work, we take the volume
fraction of the quid phase in a sample showing crystal-
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FIG. 1. Viscosity and inverse structural relaxation rate versus
volume fraction P of suspensions of PMMA spheres. The
open circles are values of ii/iio, the filled circles represent
Do/DL(0 ) The size of the symbol. s represents the estimated
uncertainty in both measurements. Inset: Upper curve: same
as main plot. Lower curve: open squares, normalized values
of the long-time self-diffusion coefficient, Do/DL, measured
on spheres of mean radius R = 247 nm (in an index matched
solvent).

fluid coexistence to be PF = 0.494. Addition of cis
decalin gave more dilute samples, the concentrations of
which were calculated using literature values for the den-
sities of PMMA and cis-decalin. The hard-sphere volume
fractions @ calculated by this procedure are accurate near

@ = 0 and P = 0.494 and have a maximum uncertainty
of ~0.006 around @ = 0.3, arising from the uncertain den-
sity of the slightly solvated particles. Particles of mean
radii R = 178 and 301 nm were used for the light scat-
tering. The viscometry was performed with the particles
having R = 301 nm. The polydispersity of the particles
was about 0.05 in each case.

Measurements of the viscosity were made using a
concentric-cylinder arrangement of the type described first
by Zimm and Crothers [4]. The inner cylinder floats in
the suspension and stress is applied through the action of
a rotating magnetic field on eddy currents induced in an
aluminum disk fixed to the cylinder. The shear stress can
be shown [5] to be proportional to the difference between
the angular speeds of the rotating magnetic field and the
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inner cylinder. The main advantage of this arrangement
is that extraneous sources of friction are minimal, so that
the effect of very small stresses can be studied. Thus the
low-shear-rate Newtonian regimes of systems that shear
thin at high shear rates can be investigated.

The viscometer was calibrated using water and cis-
decalin as standard liquids. Figure 2 shows plots of stress
against strain for PMMA suspensions of various concen-
trations. At the higher concentrations, linear regions of
the plots, whose slopes give low-shear-rate viscosities,
are followed by curvature indicating some shear thinning
of the samples. Figure 2 shows the relative Newtonian
viscosity ri/rio of the suspensions as a function of con-
centration; we estimate experimental uncertainties in the
measurements of g to be ~3%.

Our results for the viscosities of hard-sphere suspen-
sions can be compared with those of others. Marshall
and Zukoski [6] have plotted the results of a number of
studies. The values, gF, of g at a nominal concentration
of @F = 0.494 provide a sensitive comparison. Various
factors could contribute to the very wide range of values
found in the literature: 18 & riF/rio & 400. It is possible
that not all the systems studied can be modeled accurately
as hard spheres, and that significant polydispersity has an
effect. The true low-shear-rate regime may not have been
reached in all cases. The most likely cause of the discrep-
ancies is uncertainty in the determination of suspension
volume fractions. Since r) varies strongly with @ at high
concentrations (Fig. 1), small errors in @ translate to large
uncertainties in g. We emphasize that our measurements,
which give r)F/rio = 50, appear to be the only ones in
which particle concentrations are calibrated directly to the
hard-sphere freezing transition. In many previous studies,
use is made of the known low-concentration prediction
for hard spheres [7], ri = rlo[1 + 2.5@ + 6.2@ + ],
to convert measured weight fractions to volume fractions.
With this method extremely accurate measurements of g
must be made at low concentrations to obtain reliable es-
timates of P (see, e.g. , [3]).
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Dynamic light scattering measurements were made us-
ing a two-color DLS (TCDLS) equipment which has been
described in detail elsewhere [8]. Briefly, by cross corre-
lating the light scattered, at the same scattering vector Q,
from laser beams of different colors, single scattering is
selected and multiple scattering is suppressed. The tech-
nique has several advantages compared to conventional
DLS. Moderately turbid samples, such as PMMA parti-
cles in cis-decalin, which give strong single scattering and
appreciable multiple scattering, can be studied directly.
Thus complications associated with using a mixture of
two liquids to match the refractive index of the particles
and minimize multiple scattering, as in previous work,
are avoided. Furthermore, the strong scattering dominates
that from dust and sample cell walls. These factors com-
bine to make the collection of high-quality data possible.

DLS measures the normalized intermediate scattering
function f(Q, r) = F(Q, r)/F(Q, 0), where F(Q, r) =

i(exp (i Q . [ij(0) —ri, (r)])) and the static
structure factor is S(Q) —= F(Q, 0) (see, e.g. , [2]);N is the
number of particles in the scattering volume, assumed to
be large, and r~(t) is the position of particle j at time t
We have measured f(Q, r) for a wide range of scattering
vectors which span the position Q of the main peak in

S(Q) [9];first we discuss measurements made at the peak,
Q = Q . In a dense fluidlike assembly of hard spheres
at P & PF, the dominant structure, which gives rise to
the peak in S(Q), is the short-ranged ordering, or "cage,"
of particles surrounding a given particle. Thus it can be
argued that the decay of f(Q, r), the intermediate scatter-
ing function measured at Q = Q, reflects the dominant
structural relaxation of the system [10].

Figure 3 shows plots of lnf (Q, r) against Do Q2 r for
various suspension concentrations. For a dilute suspen-
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FIG. 2. Shear stress versus strain rate for several concentrated
PMMA suspensions. At low rates of strain (or stresses), the
points in each case lie on a straight line (shown), the slope
of which is the low-shear-rate viscosity. All of these lines
extrapolate through the origin to within experimental error. In
the samples at P = 0.45 and 0.48, deviations from linearity are
observed. This is the beginning of shear thinning.

FIG. 3. Intermediate scattering functions f(Q, r) of PMMA
spheres suspended in cis-deealin versus scaled (to free diffu-
sion) delay times. All measurements were made at Q values
corresponding to the main (first) peak of the structure factor
S(Q). The volume fractions are as indicated, with P = 0.494
being a colloidal Quid in coexistence with a colloidal crystal.
For all volume fractions @, the long-time behaviors are fitted
well by f(Q, large r) ~ exp( —DL(Q )Q2 r) yielding a long-
time diffusion coefficient DL(Q ). The inset shows the struc-
ture factor for a hard-sphere fluid at P = 0.494.
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sion [2], f(Q, ~) = exp( —Dog r), which would give a
straight line of slope —1 in Fig. 3. At higher concen-
trations much slower, two-stage, decays are observed.
Qualitatively, the initial decays of f(g, r) can be as-
sociated with local motions of the particles within their
neighbor cages. The (larger amplitude) longer-time de-

cays reflect substantial rearrangement of the cages, or
structural relaxation. Since these are observed to be
roughly exponential, as is also found to be the case
for atomic fluids [11], we fit them by f(g, larger) ~
exp[ —Dz(gm)Q r] and identify Dz(Q ) as the long-
time diffusion coefficient describing structural relaxation.
We estimate experimental uncertainties in Dz(Q ) to be
~5 lo. In Fig. 1, Do/Dz(Q ) is plotted against P. A
strong slowing down of the rate of structural relaxations is
observed, particularly at the higher concentrations, which
corresponds to tightening of the neighbor cages surround-

ing the particles.
We see further from Fig. 1 that the rate of structural

relaxation decreases by a factor of -50 as the suspen-
sion concentration increases from dilute to the freezing
point [12]. Our viscosity measurements show that the
low-shear-rate viscosity increases by essentially the same
factor. Moreover, the relative inverse structural relaxation
rate, Do/Dz(Q ), and the relative viscosity, il/ill, are,
within experimental uncertainties, the same at a)I inter-
mediate concentrations. It is not surprising that the two
quantities show similar trends: The processes of simple
shear flow and local structural rearrangement both involve
the relative motions of neighboring particles. Further-
more it has been suggested that the structural relaxation
and viscosity of simple liquids are coupled, particularly
in the vicinity of the glass transition [13]. However, the
apparent identity of the two quantities [Fig. 1 and Eq. (1)]
is surprising. Indeed Green-Kubo relationships [14] give
apparently different expressions, the structural relaxation
in terms of the correlation of longitudinal components
of spatial Fourier components of the particles velocities,
and the suspension viscosity in terms of the correlation of
transverse components of the stress tensor.

At other values of the scattering vector Q, f(Q, ~) also
showed two-stage decays with roughly exponential tails at
long times. The diffusion coefficients DI (Q) describing
the long-time decays, which will be considered in more
detail elsewhere [9], depended strongly on Q. Thus
Eq. (1) was only obeyed at Q = Q where the smallest
values of Dz(Q), discussed above, were found.

At values of Q where the structure factor 5(Q) = 1,
only self-terms (j = k) contribute to the structure. While
the absence of static correlations in S(Q) does not ensure
the absence of dynamic correlations in f(Q, ~), it has
been argued [15] that, under these conditions, f(Q, ~)
should represent, at least approximately, the self-motions
of individual particles in the suspension. Thus we are able
to estimate the long-time self-diffusion coefficients Dl .
DLS measurements of f(Q, 7.) were made at QR —4.0
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FIG. 4. Values of C = ksT/mRqDz versus volume fractionS

The variation of C with P means that viscosity and self-
diffusion do not scale with each other in a simple way.

[just beyond the main peak of S(g) at Q R —3.4] where

S(Q) —1; here R is the particle radius. Values of Dz
were extracted from f(g, large7) ~ exp[ —DzQ 7.] by
the same procedure as was used for Dz(Q ). The results
for Do/Dz at high volume fractions are shown in the
inset of Fig. 1. At freezing, Dn/Dz —30, significantly
less that the factor —50 found for structural relaxation.
Moreover, g and OI do not scale in the same fashion as
that found in Eq. (1).

The "generalized Stokes-Einstein" relation

kpT
(2)C~gR

provides a useful framework in which to discuss the re-
lationship between viscosity and long-time self-diffusion
at arbitrary suspension concentration. The experimental
values of the parameter C, calculated from Eq. (2) us-

ing measured values of Dq and values of g interpolated
from the measurements, are plotted in Fig. 4. In the dilute
limit, @ —0, Dz [as well as all the diffusion coefficients
D(Q)] approaches the value Dn = kIiT/6' gR, corre-
sponding to using a stick boundary condition in the solu-
tion of the Stokes equation for the flow of a liquid around
an isolated sphere [16]. With increasing volume fraction,
C decreases from 6 to about 4 at freezing (Fig. 4). The
finding C = 4 could be interpreted as arising from the so-
lution of the Stokes equation for a colloidal particle in an
"effective medium" formed by the other particles of the
dense suspension using a slip boundary condition [16].
A low value, C —3, was reported by Imhof et al. [17]
in suspensions of charged colloidal particles which inter-
act through a softer, screened Coulombic interaction and
freeze at concentrations significantly below P = 0.494.
In addition, a value C —4 has been observed for simple
atomic and molecular Iluids [18].

The development of rigorous theories of the dynamical
properties of concentrated suspensions has been limited
by the complexities of the interparticle hydrodynamic
interactions. Predictions for both viscosity and sel f-
diffusion exist, e.g. , [19]. The predicted values, however,
are divergent among themselves, so that we do not attempt
a comparison here. We are not aware of any predictions
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for the structural relaxation rate DL(Q ) which include
the effects of hydrodynamic interactions.

Finally we mention that recent experiments by Mason
and Weitz [20] have suggested a connection between the
frequency depe-ndent viscosities and particle diffusion in a
number of complex fluids.

Our main finding, for which there appears to be no
theory, is the precise scaling, expressed in Eq. (I) and
displayed in Fig. 1, of the structural relaxation rates and
inverse viscosities of suspensions of hard-sphere colloids.
We intend to investigate the generality of this result by
making similar measurements on the charged colloidal
particles described in [17].
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Note added. —Since submitting this Letter we have
discovered that Reuvers [21] has measured the low-
shear-rate viscosities of suspensions of charged colloidal
particles. The particle charges were screened by added
electrolyte and the particles stabilized by added surfactant
to give nearly hard-sphere interactions. As in our work,
concentrations were determined relative to the freezing
transition. His results are very similar to ours, giving a
relative viscosity at freezing of 49 (cf. our —50).
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