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We report results of calculations that explain the noncollinear magnetic structures observed in

U;P4 and U,Pd,Sn in the itinerant-electron picture.

We use the local approximation to spin-density

functional theory and the augmented spherical wave method incorporating spin-orbit coupling (SOC)
and noncollinear moment arrangements. We show how the relativistic effect of SOC and the different
symmetry properties of U3P4 and U,Pd,Sn cooperate, leading in the case of U3P4 to ferromagnetic and
in the case of U,Pd,;Sn to antiferromagnetic noncollinear structures.

PACS numbers: 75.25.+z, 71.45.Nt, 71.70.Ej, 75.10.Lp

Noncollinear magnetic configurations in insulators,
metals, or artificially made multilayers are no excep-
tions among the observed magnetic structures; see,
e.g., Ref. [1]. Early explanations of this phenomenon
used essentially the Heisenberg model which, as is well
known, assumes the magnetic moments to be localized,
being represented by vector observables of constant
length firmly attached to a given atom in the crystal and
coupled by exchange constants (for a review and further
references see, e.g., Ref. [2]).

In an alternative approach, connected originally with
names like Slater and Stoner, one describes well-defined
atomic magnetic moments in the band picture by treating
the itinerant electrons in the self-consistent field supplied
by the local approximation to spin-density functional
theory (LSDF). Actual calculations in this framework
met with impressive success for a great variety of very
different elemental metals and compounds [3]. These
calculations were initially carried out for systems with
collinear (ferromagnetic or antiferromagnetic) order only,
but recently the LSDF theory was generalized to deal
with noncollinear moment arrangements [4] and was
successfully applied to a number of different crystals [4,5]
where properties of the interelectron exchange interaction
were responsible for the formation of the noncollinear
magnetic structure.

It is known that, besides exchange, the relativistic
spin-orbit coupling (SOC) can also be responsible for
noncollinearity of the magnetic structure even if the
SOC is very small as in the 3d transition elements [6].
Since the strength of SOC increases rapidly with atomic
number, this effect of relativity is expected to play an
important role for the type of magnetic order of the heavy
elements. In spite of this, no investigation was made to
date in the framework of LSDF theory that takes account
of both the noncollinearity of the magnetic moments and
the spin-orbit coupling. This Letter is supposed to fill this
gap with some interesting and new results.

An effective single-particle Hamiltonian that describes
both the noncollinearity of the magnetic structure and
SOC can be written [7,8] as the sum of two contributions
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H= ﬁl + H,. This Hamiltonian ﬁ1 can be derived by
minimizing the total energy as a functional of the density
matrix [4] and is given by

ITI] = -V’1 + ZU+(0V9¢V) V,(r,)U0,,¢,). (1)

Here U(6,, ¢,) is the standard spin-%—rotation matrix that
describes the transformation between a global and a local
coordinate system of the vth atom whose spin orientation
is given by the polar angles €, and ¢, with respect to the
z axis of the global system. V,(r,) is the spin-diagonal
effective potential centered at r, = r — 7, in the local
frame of reference of the atom at site (v). The potential
is unambiguously given by functional derivatives of the
total energy in the LSDF [4] with respect to elements of
the density matrix.

The second term of the Hamiltonian, ﬁz, accounts for
the SOC and may be written as follows:

ﬁZ = ZU+(0V’ d’l/){ZMao-a?a}U(am ¢V) (2

Here o, and ia are the Cartesian components of the Pauli
spin matrices and the angular momentum, respectively,
in the local system, and the coefficients M can be found
in Ref. [8]. Diagonalizing the density matrix [4] enables
one to determine self-consistent angles and thus new
spin-polarized potentials. Following [9] we add to the
Hamiltonian the term Hy,, = IO,binZ which takes into
account interactions responsible for Hund’s second rule.
Here L, is the projection of the atomic orbital moment on
the local atomic z axis. The parameter /., was taken to
be equal to 2.6 mRyd to reproduce the atomic 5f data [9].

Our calculations are done for the ground-state mag-
netic structure and, for better physical insight, for con-
figurations ‘“nearby.” For the former the directions of
the atomic moments are varied from iteration to iteration
until self-consistency is achieved. For the latter a con-
strained calculation for a given magnetic configuration is
done with the local atomic systems unchanged during the
iteration process [10].
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The actual calculations are done with the augmented
spherical wave method [11] choosing two compounds,
U3P4 and U,Pd;Sn, for which there is available good ex-
perimental evidence on the noncollinearity of their mag-
netic structures [12,13]. It must be emphasized that these
structures (obtained from neutron diffraction experiments)
are radically different. In particular, in the case of U3P,
[12] the magnetic moments of the individual atoms do
not compensate but rather possess a ferromagnetic compo-
nent along the (111) axis. Unfortunately, precise values
of the angles between the magnetic moments could not be
uniquely determined in the experiment. In contrast to this
structure is that of U,Pd,;Sn where the magnetic moments
of the U atoms [13] compensate, resulting in (antiferro-
magnetic) zero macroscopic magnetization, and the angles
between the moments are predicted to be integer multiples
of 90°.

We first consider U3;P; and, to determine the easy
axis, carry out calculations for ferromagnetic structures
with the magnetization directed along the (001) and (111)
axes, respectively. In agreement with experiment [14]
we obtain a strong magnetocrystalline anisotropy with
a relative decrease of the total energy by 0.5 mRy per
U atom in the case of the (111) structure. Next, beginning
with the self-consistent ferromagnetic (111) structure, we
remove the constraint for the moments to be parallel to the
(111) direction. Thus free to rotate, the moments deviate
from the (111) direction and result in a noncollinear
ground-state magnetic configuration shown schematically
in Fig. 1. The calculated magnitude of the moment is in
good agreement with experiment, and the angle between
the moments and the (111) axis was found to be 1.43°.

An explanation of this property is given in Figs. 1 and
2. The Uj3P4 crystal has a bec lattice with a basis formed
by two formula units, i.e., the unit cell consists of 6 U and
8 P atoms. The crystal structure is rather complicated and

FIG. 1. Projection of the atomic positions and magnetic
moments of the U atoms in U3P, onto the (111) plane. At the
right the cone formed by the magnetic moments of the U atoms
is shown, the cone’s axis being parallel to the (111) axis.

need not be discussed here in detail. Instead, to illustrate
the important symmetry properties it is sufficient to
consider the simple picture of Fig. 1 where the projections
onto the (111) plane of the positions and the magnetic
moments of the six U atoms are shown. To emphasize
that the magnetic moments possess components parallel
to the (111) axis, we also show the cone formed by the
six U moments with the axis of the cone parallel to the
(111) direction.

For a better understanding of the system’s energetics
we carried out calculations constraining the directions of
the magnetic moments to some values of 6 (see Fig. 1
for a definition of #) near equilibrium. [During the
variation of the magnetic structure we keep each moment
in the plane containing the ground-state direction of this
moment and the (111) axis.] Our results are illustrated
in Fig. 2, which shows clearly that the total energy as
a function of @ is not symmetric about § = 0. In fact,
for reasons of symmetry no extremum of the total energy
at & = 0 is expected. This can be understood if we
consider the symmetry operations that leave invariant both
the crystal and the magnetic structures shown in Fig. 1.
These operations are the rotations by 120° and 240° about
the (111) axis and the reflections in the planes containing
the (111) axis accompanied by time reversal. None of
these operations leaves the position of any particular
atom unchanged. Because of this, symmetry imposes
no restrictions on the direction of the magnetic moment
of a particular atom but only on the orientation of the
atomic moments relative to each other and to the crystal
lattice. The deviation of the moments from the (111)
axis resulting in a noncollinear magnetic configuration
does not change the symmetry of the crystal. Therefore,
the ferromagnetic (# = 0) structure, from a symmetry
point of view, is not isolated from structures possessing
a finite #. As a result, the position of the extremum
of the the total-energy curve as a function of 6 is
“accidental,” i.e., not determined by the symmetry of the

E(mRy/U-atom)

FIG. 2. Total energy of Usz;P, as a function of angle 6.
The solid line was calculated with SOC and the dashed line
without SOC.
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problem. To demonstrate the crucial role of SOC we
show in Fig. 2 the total energy as a function of €, which
we obtain when SOC is neglected in the calculation.
Evidently, this curve is symmetric with respect to a
change in the sign of 6 and possesses a minimum in
the total energy for the ferromagnetic structure. The
principal difference between these two cases can be easily
explained using the technique of spin-space groups (SSG)
of operators allowing for independent transformations of
the spin and space variables [15]. In the presence of SOC
both variables are interconnected, and only operations
that transform both the spin and space variables in an
identical manner can be symmetry operations; therefore,
the spin-space groups give exactly the same description
of the symmetry as do the usual space groups. When,
however, SOC is neglected, an additional symmetry of the
Hamiltonian exists that must be described in terms of the
SSG operators. Here it suffices to note that a pure spin
rotation of the magnetic moment of every atom by 180°
about the (111) axis will transform the positive 6 case
shown in Fig. 1 to a case with negative #. This implies
that the two structures are equivalent. As a result, the
total energy is symmetric about § = 0. It is interesting
to note that the nature of the weak noncollinearity of
the magnetic structure in UsP4 is similar to the nature
of weak ferromagnetism of antiferromagnetic compounds
discussed some time ago by Dzialoshinski and Moriya
[6]. In both cases, because of SOC, the symmetry of the
system does not change when the atomic moments deviate
from collinearity.

Unfortunately, although theory and experiment agree
completely in that the magnetic structure is noncollinear,
the actual value of the deviation of the magnetic moments
from the (111) direction obtained in our calculations is
much smaller than the only available experimental esti-
mate made in Ref. [12] on the basis of neutron diffraction
experiments. At present we have no explanation for this
difference.

We next contrast the magnetic order of U3P4 with that
of U,Pd,Sn to which we now turn. Again, for simplic-
ity, we only show the plane of the U atoms in Fig. 3. In
the experimental work [13] the results of neutron diffrac-
tion experiments were analyzed using the six magnetic
structures shown in Fig. 3; the structure labeled NC1 ex-
plains the experiments best. It also possesses the low-
est total energy in our calculations and supplies a value
of the magnetic moment in good agreement with experi-
ment. To demonstrate the importance of SOC in this case,
we show in Fig. 4 the dependence of the total energy on
the angle ¢ between the magnetic moment of the atom
1 (see Fig. 4) and the x axis calculated with and without
SOC. Without SOC all four noncollinear structures are
equivalent (and, in fact, to magnetic structures with any
arbitrary value of ¢) because all these structures can be
transformed into one another by a pure spin rotation or by
a spin rotation plus time reversal. With SOC taken into
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FIG. 3. Plane of the U atoms in U;Pd,Sn. The six magnetic
structures studied are marked in the figure.

account this no longer applies; different magnetic configu-
rations, in particular, the configurations NC1-NC4, are
nonequivalent, and the electronic properties of the system
become ¢ dependent. This ¢ dependence, however, has
an interesting symmetry property: equal deviations of ¢
from the value ¢ = 45° for NC1 and NC2 and, for NC3
and NC4, from the value of ¢p9 = 135° into opposite di-
rections lead to equal values of the total energy. This “rest
symmetry” results from the rotation by 180° about axes
of the (110) type (accompanied by time reversal in the
case of NC3 and NC4 structures), which remains a sym-
metry operation also after taking the SOC into account.
As a consequence, the total energy has an extremum at
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FIG. 4. Total energy of U,Pd,Sn as a function of ¢. The
solid line was calculated with SOC and the dashed line without
SOC. On the right-hand side the energies of the six magnetic
structures (see Fig. 3) are marked.
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&o. Thus in the case of U;Pd,Sn the SOC changes the
symmetry properties of the Hamiltonian such that the
magnetic structure with the lowest energy is isolated by
symmetry from the structures obtained by an infinitesimal
rotation of atomic moments.

In summary, using a new calculational technique we
have shown that the local approximation to spin-density
functional theory gives a good description of the compli-
cated magnetic structures in U compounds provided the
theory takes into account both noncollinearity and spin-
orbit coupling, the latter, relativistic effect being crucial
for the formation of the ground-state magnetic structure.
Even though, for the two cases studied, the SOC lowers
the symmetry of the system, it does so in different ways.
In U3P4, the SOC leads to a shift of the total-energy
minimum to an accidental point that cannot be predicted
by symmetry considerations. In the case of U,;Pd,Sn,
however, the SOC lifts a degeneracy and leads to a ground-
state magnetic structure that is more symmetric than those
obtainable by an infinitesimal rotation of the atomic
moments.

The work was supported by the Deutsche Forschungs-
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Mainz.
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