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We present a series expansion study of spin-S square-lattice Heisenberg antiferromagnets. The
numerical data are in excellent agreement with recent neutron scattering measurements. Our key result
is that the correlation length g for S ) 1/2 strongly deviates from the exact T ~ 0 (renormalized
classical) scaling prediction for all experimentally and numerically accessible temperatures. We note
basic trends with S of the experimental and series expansion correlation length data and propose a
sequence of crossovers from renormalized classical to classical to Curie-Weiss regimes to explain them.
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In recent years much attention has focused on two-
dimensional (2D) square-lattice quantum Heisenberg an-

tiferromagnets, described by the Hamiltonian

(2)

H = JQS;. SJ, (1)
(1j)

where (ij) denotes summation over all pairs of near-
est neighbors. In their seminal work [1], Chakravarty,
Halperin, and Nelson (CHN), utilizing a mapping of
the low-energy spectrum of Eq. (1) onto the quantum
nonlinear sigma model (QNLo. M), have shown that the
low-temperature properties of these systems obey renor-
malized classical (RC) scaling, where the correlation
length $ = 0.31(c/2~p, ) exp(2vrp, /T) for T && p, (p,
is the T = 0 spin stiffness and c the spin-wave velocity).
Subsequently, Hasenfratz and Niedermayer calculated for
the 2D QNLo. M the exact value of the prefactor and the
leading O(T/2mp, ) correction [2]:

e c 2~p, l
exp

8 2~p, T

T Tx I — +4' p, 2' p, )
The neutron scattering measurements of s (T) in

S = 1/2 layered Heisenberg antiferromagnets such as
LazCu04 [3] and SrzCuOzC12 [4] reveal a remarkable
agreement with Eq. (2). At first sight, one would expect
the RC description to improve as the value of the spin
is increased. If S is formally regarded as a continuous
variable, then the Neel order is expected to vanish for
some S ( 1/2. At the critical point, where p, vanishes,
Eq. (2) no longer applies and the correlation length is, in
fact, inversely proportional to the temperature; this is the
quantum critical regime (QC), discussed in Refs. [1,5].
[It was argued earlier [5,6] that the S = 1/2 Heisenberg
model (1) exhibits certain signatures of QC behavior for

T ) 0.51; we do not discuss RC to QC crossover effects
in this Letter. ] Naively, increasing the value of spin
would move the system away from this limit so that the
RC behavior would be more pronounced.

However, such an expectation does not hold. Recently,
Greven and co-workers [4,7] have reported a significant
discrepancy between the neutron scattering measurements
of the correlation length in the S = 1 systems K2NiF4 and
La&Ni04 and the RC prediction. Preliminary experiments
on the S = 5/2 system RbzMnF4 reveal an even larger dis-
crepancy [8]. As is evident from Fig. 1, series expansion
results for S = 1 [11]are in excellent agreement with the
experimental data in the region of overlap, and also deviate
substantially from the RC prediction (here, $ is in units of
the lattice constant a).

In order to investigate the origin of this deviation,
we have calculated high-temperature expansions for the
Fourier transform of the spin-spin correlation function
(S' S') for all spin values in the range from S = 1/2 to
S = 5/2. We present the data for the antiferromagnetic
structure factor So = S(Q), where Q = (7r/a, ~/a), and
for the second moment correlation length s, defined by

= —8 S(Q + q)/Bq ~~ o/2Sti =The s.eries are ana-
lyzed either by performing a direct Pade approximation or
by taking the logarithm of the series first and then calcu-
lating the Pade approximants. The latter is likely to show
better convergence if the correlation length increases ex-
ponentially fast at low temperatures. We restrict ourselves
to temperature ranges where different methods of extrapo-
lation agree within a few percent.

The ratio between the calculated g and the Hasenfratz
and Niedermayer formula s HN given by Eq. (2) is plotted
in Fig. 2 for different spins as a function of T/p,
Contrary to the naive expectation that the RC behavior
becomes more pronounced as S increases, we find that for
the range of temperatures probed here $ monotonically
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as 5 increases. As noted above, this
same systematic trend is seen experimentally [3,4,7,8].

In an attempt to understand these data, we have con-
sidered various possible scaling scenarios. To high-

FIG. 1. Semilogarithmic plot of the series expansion result for
the correlation length in the 5 = 1 Heisenberg antiferromagnet
versus T/J (solid line) together with the experimental data for
K2NiF4 (solid circles, [4]) and La2Ni04 (open circles, [7]).
Numerical and experimental results agree with each other, and
all deviate from the exact RC prediction [2] evaluated using
known values for c and p, [9,10] (dashed line).

light the expected spin dependence, we note that for a
square-lattice nearest-neighbor Heisenberg antiferromag-
net p, = Z~(5)J52 and c = 23/ aZ, (5)JS. The quantum
renormalization factors Z~(5) and Z, (5) are known from
spin-wave theory [9] (for all values of S), T = 0 se-
ries expansion [10] (for 5 = 1/2 and S = 1), and Monte
Carlo studies [12] (for 5 = 1/2). For S = 1/2 and 5 =
1 these different methods yield good agreement.

Equation (2) may then be written as

5$ eZ, /2~Zp l
a 2 / vrZ &T/JS jexp 1—

(3)
which suggests plotting 5$/a vs T/JS to elucidate the
dependence on S. The results so obtained are shown in
Fig. 3. For S = 1/2 we also show Monte Carlo data
[13],which extend to somewhat lower temperatures than
the series expansion result. Surprisingly, over the range
of 5$/a from 1 to at least 50, the data to a good
approximation fall on the same curve. For the sake of
clarity, we have omitted experimental data for La2Cu04
(5 = 1/2), LazNi04 (5 = 1), and Rb2MnF4 (5 = 5/2),
al) of which fa11 on the approximate "scaling" curve of
Fig. 3 to within experimental error.

It was demonstrated in Ref. [4] that Eq. (3) describes
the correlation length data in absolute units in the S =
1/2 system Sr2Cu02C12 extremely well. Interpreted
naively, Fig. 3 would then suggest that RC behavior holds
for all 5, but with quantum renormalization factors Z~(5)
and Z, (5) that are nearly 5 independent for 1/2 ~ 5 ~
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FIG. 2. Series expansion results for the correlation length
plotted as g/KAHN vs T/p, Here KAHN is the exact . RC
prediction [2], Eq. (2), with c and p, from Refs. [9,10].
The ratio g/KAHN, which is fairly close to unity for S =
1/2, gradually decreases as S increases, suggesting increasing
disagreement with RC theory for larger S.

FIG. 3. Semilogarithmic plot of Sg/a vs T/JS of
Sr2Cu02C12 (S = 1/2, open circles, [4]) and K2NiF4 (S = 1,
solid circles, [4]) together with the series expansion results
(1/2 ~ S ~ 5/2, represented by the various lines) as well as
Monte Carlo data (S = 1/2, solid squares, [13]). However
impressive, this data collapse is inconsistent with Eq. (2) with
c and p, from Ref. [9].
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5/2 and close to their values at 5 = 1/2, Z~(1/2) =
0.72 and Z, (1/2) = 1.18. However, this is very unlikely
Spin-wave theory [9] predicts a substantial S dependence:
Z~(5/2) = 0.95 and Z, (5/2) = 1.03, which is already
close to the classical limit (5 ~ ~) in which ZP, Z, ~ 1.
Serious errors in these values seem very unlikely, given
their good agreement for 5 = 1/2 and 5 = 1 with those
obtained by other methods [10,12].

In an attempt to understand these data, it is helpful to
recall that at any fixed T/p, RC theory will inevitably fail
for sufficiently large values of spin. Indeed, a straight-
forward application of Eq. (2) to the 5 ~ ~ limit taken at
T/JS —1 would predict se = 0. However, this limit cor-
responds to the classical Heisenberg magnet, where g/a is
known to be nonzero and of order unity for T —JS .

One may understand where Eq. (2) might fail by fol-
lowing CHN in their derivation of the leading asymptotic
behavior in the RC regime, but taking into account that
S may be large. CHN have shown that for T « p, the
magnetic correlations can be calculated using classical dy-
namics, except that all wave vector integrations should
be limited to ~q~

~ q, = T/c rather than taken over the
whole Brillouin zone. Here "classical dynamics" simply
means that for ~q~

~ q„all Bose factors for spin waves
can be approximated assuming cq « T. A key result
of CHN is to show that such a calculation yields correct
$(T) and other observables for the quantum Heisenberg
model. In other words, $(T) for T (& p, can be obtained
from the expression for the correlation length scL(T) of
the classical Heisenberg model by substituting the lattice
spacing of the classical model, acL, by const X (c/T)
We now evaluate the cutoff wave vector as

T p, T 5 T
q C

C C PS a PS

This dependence of q, on 5 arises because the spin
stiffness is proportional to the square of 5, but the spin-
wave velocity is only linear in 5.

For 5 » 1 and T —p, —JS, the cutoff wave vector
q, —5/a » m/a is outside the Brillouin zone. Hence,
the requirement that cq ~ T, or equivalently q ~ q„
places no further restrictions on the q integrations which
are already limited by the Brillouin zone. In this case
all of the integrals are the same as those of the classical
Heisenberg magnet, and the classical 5 ~ cc limit is
recovered.

The crossover temperature T„between the RC and
classical regimes depends on S, and its order of magnitude
can be estimated as the temperature where q, —a
This yields

T„———JS, while ps —JS .
C ~ 2

a

By substituting T„ into Eq. (2), one concludes that the
crossover from RC behavior at low temperatures to
classical behavior at higher temperatures should occur for
a s „=g(T„) that is larger for larger S.
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FIG. 4. Semilogarithmic plot of the correlation length ob-
tained from series expansion plotted versus T/JS(S + 1) for
S = 1/2, 1, and 5/2. For larger spins g/a is close to the
classical (S ~ ~) limit, which provides evidence that clas-
sical (S ~ ~) magnetic behavior holds for JS && T && JS~,
in agreement with our proposed scaling crossover scenario.
Note, that in most of the temperature range shown, the 5
model is not in the scaling limit and its correlation length
deviates from the expected T ~ 0 behavior g/a = const X
(T/JS2) exp(2m. JS2/T).

In order to test this scenario, we plot the correlation
length as a function of T/JS(5 + 1) in Fig. 4, where
JS(5 + 1) is the classical (not T = 0) spin stiffness. In
replacing S2 by 5(5 + 1), we follow a purely empirical
observation that the correlation length at T » J5 for
5 ) 3/2 depends on 5 primarily through the combination
5(5 + 1) (for T (& JS, g depends on 5 only through p,
and c). We find from our series expansion results that for
S & 1 at intermediate temperatures T ~ JS

$(5, T) = scL(TcL), where Tcr = T/JS(S + 1),
(6)

as shown in Fig. 4. This result supports the hypothesis
that the deviations from asymptotic RC behavior evident
in Figs. 1 and 2 are primarily driven by RC to classical
crossover effects.

Before we conclude, we would like to point out some
puzzling features regarding the Lorentzian amplitude
of the spin-spin correlator, Sn/g, where So is the
correlator magnitude at Q = (7r/a, vr/a), defined such
that So = S(5 + 1)/3 for T ~ ~. This ratio has only
a power-law temperature dependence, and is therefore
less sensitive to the model parameters than g or So
separately. The scaling prediction for this quantity is
[1]So/$ = Zs2vrNO(T/2' p,), where Z3 is a universal
number and Wo is the T = 0 sublattice magnetization



VOLUME 75, NUMBER 5 PH YS ICAL REVIEW LETTERS 31 JULY 1995

defined such that in the classical limit Np = S. The value
of Z3 can be estimated by substituting the numerical data
for the two limiting cases S = 1/2 [11,13] and S ~ ~
[14,15] into the above formula. Here we estimate Z3 at
the lowest temperature accessible to us, T;„. We get
Z3 = 3.2 for S = 1/2 at T;„=0.35J, and Z3 = 6.6
for S ~ ~ at Tm;„= 0.8JS . This strong disagreement
for a parameter, which was shown in Refs. [1,5] to be
universal, implies that at least one of the models, and
possibly both of them, are not in the scaling limit for
temperatures of order their respective T;„[16].

Here we speculate on two possible causes of this
discrepancy. First, if the classical model is in the classical
scaling limit and the S = 1/2 model is not in the RC
limit, this discrepancy may be due to the vicinity of
the classical to RC crossover. In this case, So/$ T
for the S = 1/2 model should increase at temperatures
lower than those studied numerically, in order to reach its
presumed larger scaling limit for T ~ 0. This scenario
may be consistent with neutron scattering measurements
which give So/s —const [3,4,7].

Alternatively, the finite size of the Brillouin zone (i.e.,
lattice corrections) may be important in determining the
ratio So/g for all values of spin at any numerically or
experimentally accessible temperature, including the tem-
perature range where the correlation length for S = 1/2
is itself in agreement with the universal RC prediction.

In summary, we present and analyze high-temperature
series expansion data for the spin-S square-lattice Heisen-
berg model for all S in the range S = 1/2 to S = 5/2.
In agreement with neutron scattering measurements, we
find that the correlation length deviates from the low-
temperature RC prediction of Eq. (2) for S & 1/2, and
that the deviation becomes larger for larger S. We suggest
that this deviation results from a sequence of crossovers,
observed for large spin, from renormalized classical [T «
JS, Eq. (2)], to classical (JS « T « JS2), to Curie-
Weiss (T » JS ) regime. We find that in the proposed
classical regime, the correlation length is given by Eq. (6),
i.e., it is nearly equal to the correlation length of the clas-
sical S ~ ~ model with the same lattice spacing, when
plotted versus T/ JS(S + 1).
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