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Impurities in S = 1/2 Heisenberg Antiferromagnetic Chains:
Consequences for Neutron Scattering and Knight Shift
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Nonmagnetic impurities in an S = 1/2 Heisenberg antiferromagnetic chain are studied using
boundary conformal field theory techniques and finite-temperature quantum Monte Carlo simulations.
We calculate the static structure function, S; v(k), measured in neutron scattering and the local
susceptibility, y; measured in Knight shift experiments. S; v(k) becomes quite large near the
antiferromagnetic wave vector, and exhibits much stronger temperature dependence than the bulk
structure function. g; has a large component which alternates and increases as a function of distance
from the impurity.
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Although the spin chain problem has been a popular
topic for theoretical physicists since the early days of
quantum mechanics, the correlation functions of the
antiferromagnetic Heisenberg spin-1/2 chain could only
be calculated with the help of modern quantum field
theory [1]. Adding nonmagnetic impurities to a spin-
chain compound breaks the chains up into finite sections
with essentially free boundary conditions. The correlation
functions in the presence of such a boundary were
calculated only recently [2]. These results provide a
simple application of a general theory of conformally
invariant boundary conditions which has been applied to a
wide variety of quantum impurity problems in condensed
matter and particle physics [3]. These functions exhibit a
universal dependence on the boundary, at long distances
and times. In this paper we wish to focus on a couple
of applications to these results of experimental relevance:
the impurity contribution to the static structure function,
S; v(k, T), and the local susceptibility, g; (T) We derive.
analytic expressions for these quantities using field theory
methods and compare them with finite-T Monte Carlo
simulations using lengths of up to l = 128 with a varying
number of time steps up to 64 and several hundred
thousand sweeps through each lattice.

is equivalent to a free boson field theory in 1+1 dimen-
sions in the low energy, long-distance limit [4]. The spin
operators are expressed in terms of the boson @ as'

S' = c7, $/v 27r + a( —1)J cos v 2'@, (2)

where a is a constant. The boson Hamiltonian is then
simply given by the free part together with terms which
become irrelevant as the temperature is lowered. Those
irrelevant terms give rise to temperature and finite length
dependent corrections with a characteristic power law.

This theory has been used successfully to calculate
impurity effects [2], the low energy spectrum [5], and
correlation functions [1]. The latter agree well with recent
neutron scattering experiments [6]. Like the expression
for the spin operators in Eq. (2), the correlation functions
also acquire an alternating and a uniform part as a
function of the site index x. At finite temperature, the
alternating part is given by

The Heisenberg Hamiltonian for the antiferromagnetic
spin-1/2 chain

H = JQS; 5;+1

7T (—1)' '
(S (x tl)S'(y, t2)).it —c

v p Q sinh[7r(x —
y

—v 6 t)/v p] sinh[7r(x —
y + v At)/v p]

(3)

(At —= t2 —ti). We set the lattice spacing to 1. The spin-
wave velocity is known to be v = J7r/2 from the Bethe
ansatz. The constant c can be determined numerically
and is given by c = az/2 times an arbitrary normalization
of the two-point function, which we chose to set to 1.
The irrelevant terms in the Hamiltonian give logarithmic
corrections to this expression [5]. In fact, it has been
shown recently that the logarithmic corrections give rise

to an infinite slope of the uniform susceptibility at zero
temperature [7].

The correlation functions in the presence of a boundary
were first calculated in Ref. [2]. There it was argued that
the free boundary condition on the spin operators corre-
sponds, in the continuum limit, to a boundary condition
on the bosons: $(0) = Pt. (0) + QR(0) = Qvr/8 Since.
Pt is a function only of vt + x and @R of vt —x, this

934 0031-9007/95/75(5)/934(4)$06. 00 1995 The American Physical Society



VOLUME 75, NUMBER 5 PH YS ICAL REVIEW LETTERS 31 JULY 1995

implies that we may simply regard this boundary con-
dition as defining @R to be the analytic continuation of
Pt to the negative axis Pg(x) = —Pt (—x) + $7r/8.
Whereas the bulk correlation function factorizes into a

product of left and right two-point Green's functions,
the boundary correlation function becomes a four-point
Green's function for left-movers. Consequently, while the
uniform part is largely unaffected by an open boundary
condition, the alternating part gets modified to

277X . 27TJ

vp up up
)

—1//2
7r(x + y + vent) . vr(x + y

—vent) . vr(x —
y + vb, t) . ~(x —

y —vent) l
X

~
sinh sinh sinh sinh

vp vp vp vp j
(4)

which reduces to Eq. (3) in the bulk limit xy )) ~(x
y)2 —u2ht~l.

Here we have also included the time dependence of the
Green's function, but we will only calculate the equal-
time spatial Fourier transform S(k), deferring considera-
tion of the full dynamical structure function to later work.
We predict a characteristic impurity contribution to the
structure factor, which may be observable in magnetic
neutron scattering experiments on quasi-one-dimensional
spin-1/2 magnetic compounds (e.g. , KCuF3). Doping
with impurities will break the spin chains and thereby in-
troduce the desired open ends. For a finite chain of length
l we can define a structure factor Si (k) as

I

St(k) —= — P (S'(x)5'(y))e'"':5(k)
l x,y =1

~imp(e)+
l

(5)

The structure function for the finite chains has been
decomposed into a "bulk" part S(k) which is independent
of length and an "impurity" part of order 1/l: 5;~p(k) —=

Iimt i[St(k) —5(k)]. The bulk part reproduces the
signal of a system without open ends (e.g. , an infinite
chain) while the effect of the open boundary condition
is entirely contained in the impurity part. Higher order
6(1/l ) terms will also be present, but can be neglected
if the impurities are dilute. Since each impurity creates
the same contribution 5; p(k) in the dilute limit, the
experimental signal will contain the impurity part as a
term that scales with impurity concentration n to first
order: S„p(k) = S(k) + nS; p(k).

From the results of Eqs. (3) and (4), it is clear that we
expect interesting effects for wave vectors near k = m.
Field theory predictions for small k —~ and T are
obtained by Fourier transforming Eqs. (3) and (4). We
assume here that the impurities are dilute enough so
that the infrared cutoff is always given by the inverse
temperature p (& l jv. The bulk structure function [8]
can then be expressed in terms of the digamma function
P [9] and the reduced variable k' = (k —7r)v P/7r:

5(k') = 2c[ln(AP 1) —Ref(1/2 —ik'/2) ], (6)
where A is a constant depending on the cutoff.

The impurity contribution 5;~p(k ) is obtained by
Fourier transforming Eq. (4) with the bulk part, from
Eq. (3), subtracted off assuming two open ends. This
subtraction eliminates the ultraviolet divergence, giving
the scaling form

5; p(k') = c
2vP cosk'u

du
sinhu

sinh2u

sinh2~

cosk'u
du

sinhu
= uPf(k'). (7)

Here u = 7r(x —y) jvp, w = m(x + y)/vp. Note
that, apart from the logarithmic term in Eq. (6), S(k')
and 5; p(k') are functions only of the scaling variable
k', but we expect corrections from irrelevant operators
and the finite ultraviolet cutoff which become smaller
as T ~ 0 and (k —7r) ~ 0, with k held fixed. For
small k' we have S(k') ~ In(p) + const + 8(k' )
and 5;~p(k') ~ vp[const + 8(k' )], so that the
impurity part has a much stronger temperature depen-
dence. At large k', 5(k') vanishes exponentially, but
Sj~p(k ) ~ vPc/wk

Our Monte Carlo results for 5(k) and 5; p(k) are
shown in Figs. 1 and 2 for four different temperatures. To
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FIG. 1. The bulk structure factor S(k) according to quantum
Monte Carlo simulations.
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show the predicted scaling form we plotted the results as a
function of the reduced variable k' in Figs. 3 and 4. The
Monte Carlo simulations agree reasonably well with the
field theory predictions. This comparison with the Monte
Carlo data was used to extract the constant c = 0.14 and
A = 0.75 in Eq. (6).

We now consider the local susceptibility g; at any
arbitrary site i under the influence of a uniform magnetic
field h acting on the complete chain

J

For a chain with periodic boundary conditions, y; is the
same for all sites because of translational invariance.

If we are dealing with an open boundary condition,
however, the translational invariance is clearly broken and
we would naively expect the open end to be more suscep-
tible. Moreover, it is now possible, in the field theory
treatment, to have a nonzero alternating susceptibility as a
function of site index ~, = g,""' + (—I)'y,'". Using the
analytic continuation of the left-movers onto the negative
half axis from above, y'" is given by a nonzero three-

!

point Green's function:

aP
dy S„'„;(y) dy I e

—J2 4 I*. ') ~24, (
—*. ') ~L(

&) + H & )t9x

Q(v P/vr) sinh(2vrx /vP)
(uP/7r) sinh[vr(y + x + iuAr)/vP](v P/vr) sinh[7r(y —x + iuAr)/vP]

x
u Q(vP/7r) si nh(2~ x/v P)

' (9)

where x is the distance from an open boundary con-
dition. At low temperatures the alternating part ac-
tually increases with the distance from the open end

: a~x/~2v. Any finite temperature suppresses
this growth exponentially with x, so that we expect a typ-
ical maximum which gets shifted further into the chain
as the temperature is lowered. Furthermore, even at
T = 0, the staggered magnetization does not increase in-
definitely with distance from the impurity, but rather os-
cillates with a wavelength, 47rv/h, i.e., M'"(x, h, T =
0) = a/2/x sin(hx/2v). This exotic behavior is similar
to Friedel oscillations except that the 1/r3 decay, which
occurs there, gets enhanced to a ~r growth due to a com-
bination of reduced dimensionality and the absence of
charge fluctuations in this pure spin system.

The result from Eq. (9) can be confirmed indepen-
dently with quantum Monte Carlo simulations. The lo-
cal susceptibility as a function of distance from the open
end is shown in Fig. 5 from Monte Carlo simulations at

T = J/15. After extracting the uniform and alternating
parts as shown in Fig. 6, we can compare the alternating
part to the predicted form from Eq. (9), where the over-
all constant was chosen to be a = 0.58. The field theory
prediction, c = a /2, together with the value c = 0.14
from our MC measurement of S(k), gives a = 0.53, in

reasonable agreement with above. While the shape of the
theoretical prediction for y'" fits the Monte Carlo results
very well, there is an unexplained shift of about two sites,
which might be due to irrelevant operators. The func-
tional dependence in Eq. (9) holds rather well for all tem-
peratures P sampled (up to the shift of two sites). For
T = 1/15 the shift in the susceptibility due to the impu-
rity is larger than the bulk susceptibility over a distance of
about 25 lattice sites from the impurity. Thus we expect
that it should be possible to observe this effect in nuclear
magnetic resonance Knight shift experiments. Note that

~; ( 0 for small even i, so that those spins will tend to
antialign with the applied field.
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FIG. 2. The impurity part of the structure factor S; p (k)
according to quantum Monte Carlo simulations.

FIG. 3. Monte Carlo results for the shifted bulk structure
function, S(k') —2c In(AJP), compared to the field theory
prediction of Eq. (6), with c = 0.14 and A = 0.75.
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Th uniform part of the susceptibility is not directlye uni
affected by the boundary condition, but gets an additiona
nonuniversal contribution near x = 0 from an irrelevant
boundary operator [2,10], which also appears to be present
in the Monte Carlo results in Fig. 6. This shift in
the uniform susceptibility is what would be expected
classically, but the large alternating part is a purely
quantum mechanical effect.

In conclusion, we have calculated the effect of impuri-
ties on the neutron scattering cross section and the NMR
Knight shift using both field theory and Monte Carlo
methods. The two methods are in reasonable agreement
and the effects seem large enough to be observable ex-
perimentally. The Knight shift actually increases with
distance from the impurity in the limit of zero field and
temperature.
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FIG. 5. The local susceptibility vs distance from the open end
according to Monte Carlo simulations at T == J,~15.

FIG. 4. Monte Carlo results for the scaled impurity part
TS; ~(k') compared to Eq. (7) with c = 0.14.
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FIG. 6. The uniform and alternating parts of the local
suscep i i i yt b l t according to Monte Carlo simulations at T =

ith a = 0.58.J/15 compared to the field theory equation (9) wit a =
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