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Anisotropic Ferromagnetic Quantum Domains
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We study a model for anisotropic ferromagnetic quantum domain walls. The large degeneracy of
the ground state in the extreme anisotropic (Ising) limit, associated with the translational invariance
of the "kink center, " is lifted in the quantum system in a peculiar way. The critical point, at which
the Hamiltonian is invariant under the quantum group U~ [SU(2)j, is exactly determined by a cluster
method. We also find the ground state wave function at the critical point. Some generalizations of
these results for arbitrary spin and dimension are obtained.
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A simple model of a spin-S quantum Heisenberg
ferromagnet with a domain wall is given by the spin
Hamiltonian

= —J P(S„'S„+s + S~S„+s)
r, 6

—ags„'S„'„—h g S„' — g S„', (1)
r, cst t r EF rEFs.

where 1 ) 0 and 6 ~ J are exchange parameters, and r is
a lattice vector, with a neighbor r + 6, on a d-dimensional
cubic lattice of side L. The effective field h ~ 0 represents
the interactions of the spins with the boundary surfaces
F+ (F ) with positive (negative) normal vectors. In

one dimension, a fully isotropic (J = 6) spin-2 quantum
Heisenberg model for a ferromagnetic domain wall has
been analyzed in a beautiful paper by Schilling [1]. In
a later work by Alcaraz et al. [2], the solution of the
eigenvalue problem in the presence of the antiparallel
boundary fields required a nontrivial generalization of the
Bethe Ansatz. Real materials, however, usually display
some kind of anisotropy, It is therefore of special interest
to study the more general case, with 1 4 A.

In this Letter, we are mainly concerned with the one-
dimensional version of (1) with a Hamiltonian given by

L—1

Wl. = —J g(S;S,'+, + S,'S,'+i)
i=1
L—1

S,'S,'+ i
—h(Si —Sl') . (2)

i=1
It is instructive to analyze the classical version of (2). The
classical candidates to the ground state are the ferromag-

netic configuration tT. . . t'$ with energy Ef = —S (L—
1)A, the highly degenerated kink configuration [.. . [J
. . . J with energy Ek;„k = Ef + 2S 5 —2hS, and the
helical configuration of the form

S, = S(0, sin[(i —1)0„], cos[(i —1)0„]);
i =1,2, . . . , L, (3)

with step 0„= 7r(2n + 1)/(L —1), for n = 0, 1, 2, . . . ,

and energy

1+6
Eg =Ff

2
cos0„—2AS . (4)

At 6 = J, for arbitrary values of h, the ground state
is given by the degenerated helical configurations, with
0„«1. However, for 5 ) 1, the ground state is the
nondegenerate ferromagnetic configuration, if h ( AS, or
the L —1 degenerate kink configuration, if h ) AS.

For spin 2, in the extreme anisotropic limit 5/J ~ ~
(Ising limit), Eq. (2) is reduced to the Ising Hamiltonian

h~I,I. P rri rri+1 (~1 rrl-) s

i=1
(5)

where a.; = ~1, and we reproduce the classical picture
with a phase transition, at h = 6/2, from the ferromag-
netic ground state to the (L —1) degenerated kink ground
state. In this Ising limit it is easy to use the transfer ma-

!

trix technique to write the canonical partition function

cosh( s ) + cosh(Ph)
Ziv = 2cosh

~ 3 [I + (tanh pA) ] +
4(cosh s )

1 + cosh z cosh(Ph)
[I —(tanh P 5) ]

4 cosh 4

(6)

where p is the inverse of the temperature. For fixed term of Eq. (6) gives a nontrivial contribution, and
L, in the p ~ ~ limit, we obtain the energy and the we have the kink energy Ei, = —A(L —1)/4 + 5/2—
entropy of the ground state. If h ) 5/2, the second h and entropy ln(L —1). If h ( 5/2, this second
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term does not contribute, and we have the ground state
ferromagnetic energy Ef = A—(L —1)/4, in agreement
with previous considerations.

How does this picture change in the quantum case? To
consider a situation with finite values of 5, let us make
J = 1 and concentrate in the S =

2 case. Following
Bader and Schilling [3], we write A~ as a sum over "cell
Hamiltonians" including two sites,

I —1

~(&/2)
(7)

l =1
where

9-l,' = —(s;s,„+s,'s,'„+as;s,'„)
—h(S,' —S,'+)) . (g)

If Eo is the lowest eigenvalue of M and Eo is the ground
state energy, we have

Eo ~ (L —1)E() . (9)
By the variational principle, as the expectation value of

in the ferromagnetic ground state is given by (L ——
l)h/4, we have Eo ~ (L —1)—h/4. Also, we have

= min[(A —244h2 + 1)/4, —5/4], from which we
see that the ground state is ferromagnetic for

h & -452 —1, (10)
and a lattice of arbitrary size. However, if h ) (b,
I)'j /2, a "kink-type" solution is expected. We remark
that for 5 ~ ~ this agrees with the Ising bound h ) 6/2,
while for 5 = 1 agrees with Schilling's result [1] (that
is, for h ) 0, the ground state is of "helical" type, as
shown by a generalized Bethe Ansatz) This sugg. ests that
h = h, = (5 —1)'j /2 is an exact result for the critical
point, as we have indeed been able to check numerically
and analytically. It is interesting to remark that in a
recent work by Carneiro, de Oliveira, and Wreszinski [4]
for a one-dimensional quantum model with competing
interactions between first and second neighbors, the Bader-
Schilling cluster method [3] yielded the exact location of
the phase transition in the ground state with a cell of three
sites. In the present case, just two sites were enough.
This is rather surprising as we might have anticipated a
monotone behavior with cluster size.

It is also surprising that at h = h, the Hamiltonian is
invariant under the quantum group U~ [SU(2)]. This can
be seen upon setting

h, = 4(q —
q ') and 5 = 2(q + q '), (ll)

as suggested in a paper by Pasquier and Saleur [5].
Since q is real (5 ) 1) and hence cannot be a root
of unity, the theory of representations of U~ [SU(2)]
is essentially equivalent to the theory of U [SU(2)].
In the isotropic case, for q = 1, with h = h, = 0, the

(14)

and

[x+,x ] = [2s']. (15)

On each copy of the Hilbert space C +', for a spin
quantum number S, the step operator X+ acts as

[s —s ][s + s + 1] ' '
X+ = s+ . 16

(s —s') (s + s' + 1)
Using all these facts, it is possible to show that the
ground state wave function in each sector m = g; S,' is
degenerate and given by

(m) js,
'Po, t. = q '=' 'Is(, s2, . . . , st ), (17)

fs)

where s; = ~I/2 and Is), s2, . . . , st. ) is the basis where
S' is diagonal.

In the classical and Ising cases, for h ~ h„we have
an enormous degeneracy due to the position of the kink
center. How is this degeneracy lifted in the quantum
case'? A generalization of an ingenious argument by
Schilling [1], which follows an idea of Griffiths [7], may
be adapted to the present case. The Bethe Ansatz solution
[2] for the Hamiltonian (2) gives the eigenenergies in the
sectors with v = 0, 1, 2, . . . , down spins,

E((kj)) = (L —l)6/4 + P— (A —coskj),
J=1

where (kj) is the set of roots of the equations

state Af =
I J. . . J) is a ground state and corresponds

to the highest eigenvalue S(S + 1), with S = (L—
1)/2, of the total spin (Casimir operator). Therefore,
there exist degenerate states (St )"II, p = 1, . . . , (L—
1), at higher values of St = —(L —1)/2 + 1, . . . , (L—
1), respectively. Of course, this breaks down for the
antiferromagnet, where the ground state, characterized
by S' = S = 0, is therefore unique by the Lieb-Mattis
theorem [6]. Similarly, for h = h„and using the Bader-
Schilling argument given above, we show that Af is a
ground state, with energy

(q + q-'& t'L —Ii

As in the case q = 1, Q,j lies on the eigenspace corre-
sponding to the highest eigenvalue of the Casimir opera-
tor of U~ [SU(2)],

-2
c,(q) = s'+ —, + x-.x. ,

1 (13)

where [2H] = (q —
q )/(q —

q '), and S' and X
are the generators of the Lie algebra of U~ [SU(2)] with

[s', x.] = x, ,

, &(z+ ()& [I —(6 —2h) e'kj ) [I —(5 + 2h) e'k~] ' &( k&,k()—
[I —(5 —2h)e '"~][I —(5 + 2h)e '"~] . &t" ( B(kj, k()

(19)
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where

P(k k~) = (l 2Ae i' + e~( + 'l) (I 2Ae
— + e (k+ 'l) (20)

P&
= P]

1

A ~2h'
gL 2y ~ ~ ~ y v

2A —p„
(24)

and the energy

E: —E;= +[A —
—,(p. + p )]

p, =l

However, the solution p~ must be discarded since it
contradicts (21) for h ) 0, and the solution pi is valid
for h ) h, = 4A~ —1/2. We can easily see that for
h ~ h, all individual contributions A —(p~ + I/p~)/2
to the energy (25) are negative for h ) h, and are zero
for h = h, . Hence at h = h, the ground state is L
degenerated, and for h ) h, the energy is nondegenerate
but decreases with the number of down spins. Hence
in the framework of the Bethe Ansatg, the degeneracy is
lifted and the ground state for h & h, is in the sector with
p = L/2 down spins. In order to better analyze the lifting
of degeneracies let us consider the gaps between the two
lowest states in the sectors with v and v —1 down spins,

G, , i
= E„—E, , = A —z(p„+ p„'). (26)

In the case A = 1 we can iterate [1] Eq. (24) and obtain
G = 1/L, for p = L/2, which is expected since at
5 = 1 the model in massless with a classical dispersion
relation E —k~. For A ) 1, from Eqs. (24) and (25), we
obtain

G„—exp —2v ln A —QAz— (27)

for v —o(L/2) which shows that the gap vanishes even
more quickly than in the case 6 = 1 case. The expo-
nential vanishing is reasonable since now the model is
massive. It should be remarked that this behavior resem-

For A ~ 1 the roots fk, ) that minimize the energy (18)
are purely imaginary, corresponding to "bound states, "
because the surface term in Eq. (2) acts like an attractive
potential for spin deviations. By making p~ = e' ~, with

(21)

and defining the variables (xi, xq, . . . , x,) by

xi = [1 —(A —2h)pi][1 —(A + 2h)pi],

x~ = p~ —ipse, + 1 2App, , p = 2, . . . , P (22)

we can write Eq. (19) as a fixed-point equation [1]
x„= II „(xi, . . . , x, )G~(xi, . . . , x,),

A~(xi, . . . , Xp) = p (23)

for p, = 1, 2, . . . , v and where G~(xi, . . . , x, ) is indepen-
dent of L and finite for all (xi, xq, . . . , x, ) compatible with
(21). The solution of (23) for L ~ ~ is x~ = 0, for
p, = 1, 2, . . . , v, which gives

bles the classical degeneracies. However, the sectors with
v —o(1) do not vanish as L ~ ~, giving a true lifting of
degeneracies in the thermodynamic limit.

To conclude this paver let us present some results
for higher spins (5 ) z) and higher lattice dimensions
(d ) 1). In both generalizations the model is not exactly
integrable anymore, but our numerical results show that a
phase transition of the same nature, as in the case 5 =

2

and d = 1, takes place at h = h, = Sv'Az —1. At
h = h„all the lowest eigenenergies in the U(1) sectors
with a given magnetization are degenerated with energy
Eo = AS (L —1)", in a similar way as the U~(SU(2))
chain. This result reproduces the classical situation when

At h = h„defining A = (q + q ')/2, h =
h, = 5(q —

q ')/2, and inspired by the wave function
(17) obtained within the formalism of the quantum group
(which does not even exist for 5 4 z or d ) 1), we were
surprisingly able to guess a form for the groundstate wave
function, which turns out to be correct as we can prove
using a finite induction method. In the one-dimensional
case, for a given sector with m = g; 5,', we obtain in the
5' basis

~(m) y g js,

where

65 5 —3

1=0

if 3=0,

1
$ 1 sp ~ ~ sy. )

(28)

if l = 1, 2, . . . , 5.(25)i
l! 25 —l!

(29)

In the d-dimensional case the ground state wave functions
are given by

(El+&2+".+ ld)5„
q

(5)
Is„s„

~ (m)

()

2S

(qi'q~ qd")'" fi
'"' '

L=O

(32)
The results for higher spins and lattice dimensions indi-

cate that at h = h, these models have some special hid-
den symmetry. Following Ref. [8] we can show that for

(30)
where r = (ii, iz, . . . , id). In this last case we can even
consider the introduction of different anisotropies A and
surface fields h for each direction 6 = 1, 2, . . . , d. At
h =h, =S, wehave

[( ')' — ]' ' = ( — ')i,
and the ground state wave function is given by
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spin 2 but for all dimensions these generalized Hamil-
tonians describe the asymmetric diffusion in nonequilib-
rium statistical mechanics [9]. The degeneracies of the
ground state in this case are related to the conservation
of the number of particles; the probability distribution
of particles in the steady state of the lattice with free
boundary conditions can be straightforwardly obtained
from Eq. (28). A phase transition induced by the bound-

aries has been predicted in the case of a spin-& chain
with twisted boundary conditions [10], St+t = p

—
S~

SL = 5&, with p E R. However, for p 4 1, the corre-
sponding Hamiltonian is non-Hermitian (and hence un-

physical), and the boundary conditions are lattice depen-
dent. The present Letter gives the first application of
quantum groups to a model with an independent origin
in physics (that is, in the physics of magnetism). It also
provides an illustration of a physical ground state phase
transition induced by a surface term.
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