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Evidence for a Superfluid Density in t-J Ladders
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Applying three independent techniques, we give numerical evidence for a finite superAuid density in
isotropic hole-doped t-J ladders. We show the existence of anomalous Aux quantization, emphasizing
the contrasting behavior to that found in the "Luttinger liquid" regime stabilized at low electron
densities. We consider the nature of the low-lying excitation modes, finding the 1D analog of the
superconducting state; using a density matrix renormalization group approach, we find long range
pairing correlations and exponentially decaying spin-spin correlations.

PACS numbers: 74.72.—h, 71.27.+a, 71.55.—i

The behavior of strongly correlated electrons confined
to coupled chains is at present a topic undergoing much
investigation; the reasons for this attention are numerous.
Firstly, with the behavior of electrons under t-J or Hub-
bard type interactions in one-dimension now relatively
well understood, the two-chain systems provide an inter-
esting "first step" towards the challenge of two dimen-
sions. Secondly, the unusual nature of the ground state of
the undoped system, in particular the existence of a spin
gap [1], leads to further interest with regards to "gapped"
superconducting behavior. Furthermore, it is believed that
compounds such as (VOz)P207 [2] and SrCu203 [3] may
be described by a lattice of coupled chains. While there
is considerable literature concerning the possible phases
in a t-J ladder, a complete picture is still far from being
realized and our aim is to clarify the nature of the gapped
state when the system is doped [4]. Various techniques
have been applied previously in this hole-doped region
[5], giving some indication of hole pairing and modified
d-wave superconducting correlations.

The t-J Hamiltonian on the 2 X L ladder is defined as
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where most notations are standard. P (= 1, 2) labels the
two legs of the ladder (oriented along the x axis), while

j is a rung index (j = 1, . . . , L). We shall concentrate
on the isotropic case where the intraladder (along x)
couplings J and t are equal to the interladder (along y)
couplings J' and t'.

At half filling, the Hamiltonian reduces to the Heisen-
berg model and the behavior is generally relatively well
understood [1]. A simple interpretation is given by con-

sidering the strong coupling limit (J = 0) in which the
ground state consists of a singlet on each rung with a spin
gap (—1') which corresponds to forming a triplet on one
of the rungs. With the introduction of interchain coupling
J, the triplets can propagate and form a coherent band,
thereby reducing the spin gap. In the isotropic case, the
gap remains (—0.51) and it is the nature of the state formed
on doping such a system that we shall concentrate on.

A possible phase diagram for the isotropic t-J ladder as
a function of 1/t and doping has been proposed recently
[6]: Away from half filling, the spin-gapped region
persists, exhibiting hole pairing and, as we will show,
possible superconducting correlations. This behavior is
observed up to J/t )- 2.1 [7] where the system phase
separates. As the system is doped further, a Luttinger-
like phase is stabilized exhibiting gapless spin and charge
excitations. At very small electron densities, an electron-
paired phase exists.

In this Letter we will describe three independent forms
of evidence for a finite superAuid density in the spin-
gapped region of the phase diagram (working specifically
with an electron density (n) = 0.8). The first set of
results are based on the existence of anomalous flux
quantization. Secondly, we consider the spin and charge
excitation modes. Finally, we present direct calculations
of correlation functions obtained using the density matrix
renormalization group method.

Our first set of results then concern the existence of
anomalous Aux quantization. The calculation involves
threading the double chain ring with a flux ~Ii and studying
the functional form of the ground state energy with respect
to the threaded flux, namely Eo(4) (we will measure
the flux 4 in units of the flux quantum 4o = hc/e).
In general, Eo(4) consists of an envelope of a series of
parabola, corresponding to the curves of individual many-
body states E„(4), exhibiting a periodicity of 1. Byers
and Yang [8] have shown that in the thermodynamic
limit, Eo(@) exhibits local minima at quantized values
of 4, the separation of which is 1/n where n is the
sum of charges in the basic group; these local minima
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in Eo(rIi) must be separated by a finite energy barrier.
Hence, for a superconducting state, we would expect
minima in Eo(4) at intervals of 1/2; these minima are
related to the existence of supercurrents that are trapped
in the metastable states corresponding to the flux minima
and are thus unable to decay away [9]. It should be
mentioned that this phenomenon, known as anomalous
flux quantization, is an indication of pairing and is not
sufficient in itself to imply a superconducting state.

Detailed studies of the attractive Hubbard model on
two-dimensional lattices [10] have indicated the presence
of anomalous Aux quantization, confirming the existence
of superconducting correlations in the ground state. In
contrast, the repulsive Hubbard model exhibits no anoma-
lous flux quantization.

In addition to the existence of flux quantization, the
function E(re) also gives a quantitative value of the
superfluid density, defined in one dimension by D, =
(ri /BC' ) (limr [LEo(4)]). A distinction should be
made between D, (the superfluid density) and D (the
Drude weight) [11], which are in general different:
The superfluid density corresponds to the curvature of
the envelope of the individual many-body states as a
function of flux, while the Drude weight is obtained
from the curvature of a single ground-state many-body
energy level. In one dimension, however, there are
only a finite number of energy level crossings in the
thermodynamic limit [11], and D and D, are equal.
In the thermodynamic limit no particular applied flux
is preferred when calculating D, [12], and hence we
consider the curvature of the whole LEo(tIi) curve. Note
that the existence of a superfluid would require both
anomalous flux quantization and a finite D, .

Numerically, the application of a flux through a
double chain ring is achieved by modifying the kinetic
term of the Hamiltonian such that cj p.,cj+ ~ p., ~
c~ p, cj+i p.,e' /, where tIi is the flux through the
ring. Hence, the application of a flux is numerically
equivalent to a change in the boundary conditions of
the problem: 4 = 0 representing periodic and 4 =

2
representing antiperiodic boundary conditions.

The technique we have employed is exact diagonal-
ization of finite systems, specifically 2 X 5 and 2 X 10
double chain rings with electron densities (n) = 0.8 and

(n) = 0.4 corresponding to the regions of the phase di-

agram where we expect spin-gapped or Luttinger liquid
behavior, respectively. The modes of the system are char-
acterized first by their spin: singlet and triplet excitations
correspond to charge and spin modes, respectively. It is
also useful to consider the parity of the states of the sys-
tem under a reflection in the symmetry axis of the lad-
der along the direction of the chains. Even (R, = 1) or
odd (R, = —1) excitations correspond to bonding (8) or
antibonding (A) modes, respectively. Finally, it is neces-
sary to consider the momentum, k, = 2' n/L, in order to
determine the dispersion relation of each mode. Imple-

mentation of these quantum numbers and symmetries is
straightforward using exact diagonalization methods.

Concentrating initially on J/t = 0.5, (n) = 0.8, we
show in Fig. 1 all possible spin and charge modes of the
2 X 10 system, for all possible momenta, as a function of
applied Ilux. We show the full spectrum only for rIi ~
0.25 in order to simplify the diagram. The minimum
energy function Eo(tIi) is formed by charge (spin zero)
bonding modes; the excited modes with different quantum
numbers move further from the ground state as the system
size increases (a result we have checked by finite size
scaling techniques) and hence will not interfere with
Eo(rIi). The existence of minima at intervals of half a
fiux quantum (i.e. , anomalous fiux quantization) clearly
indicates the existence of pairing.

In order to probe the behavior of Eo(4) further,
we consider the quantity LtEo(4) —Eo(4 = 0)] as a
function of tI~ for various values of 1/t and (n). Note that
the curvature of this function in the thermodynamic limit
gives D, Figure 2(.a) shows the contrasting behavior
obtained when keeping J/t fixed at 1.0 and varying
the electron filling, specifically (n) = 0.4 and (n) =
0.8 (both the 2 X 5 and 2 X 10 results are shown).
This plot clearly shows the existence of anomalous flux
quantization for a filling of (n) = 0.8 and its absence
for (n) = 0.4. The occurrence of the absolute minima
at different values of fiux (tIi = 0 and rIi = 1/2 for
(n) = 0.8 and (n) = 0.4, respectively) can be explained
by considering the noninteracting Fermi sea for the two
fillings; a lower energy state is formed by choosing
the flux to give a closed shell. Figure 2(b) shows an
equivalent plot but in this case keeping (n) constant at 0.8
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FIG. 1. Energy as a function of flux (in units of 4o = hc/e)
for J/r = 0.5,(n) = 0.8 for a system size of 2 x 10. We
show all possible momenta for various quantum numbers. For
the charge modes the solid lines correspond to bonding and
the dotted lines to antibonding, while for the spin modes the
dashed lines correspond to bonding and the dot-dashed lines
to antibonding. %'e give only the charge bonding modes and
the lowest lying spin antibonding mode in full to simplify the
diagram.
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FIG. 2. L[Eo(4) —Eo(4 = 0)] where L is the length of the
ladder and Eo(4) is the ground-state energy with an applied
Aux C). The dashed lines correspond to 2 X 5, the solid lines
to 2 X 10. (a) The results for (n) = 0.4 and (n) = 0.8 both
with J/t = 1.0, while (b) shows the results for J/t = 0.5 and
J/t = 4.0 both with (n) = 0.8.
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nant pairing. The phase diagram for the various possible
phases for a chain with a Hubbard (rather than t J) H-amil-

tonian has recently been found [14] and interestingly on
doping away from half filling, this spin-gapped phase with
one gapless charge mode is stabilized, exactly the situa-
tion we will suggest for the t-J case. In addition, both
this reference and recent papers by Nagaosa and Schulz
[15] argue that in this gapped phase, a four-fermion oper-
ator associated with the superfluid density would exhibit
4kf = 2(kf + kf ) charge-density oscillations which de-

cay as l '~~ when the pair-field correlations decay as 3

in contrast to a Luttinger liquid, the power law term in the
density-density correlation function at 2kf is missing.

In Fig. 3 we show the dispersion of the spin and charge
modes for the 2 X 10 ladder with (n) = 0.8, J/t = 1.0,
corresponding to the region of the phase diagram where
we believe the superAuid to exist. There are several
obvious features: Firstly, there is a finite gap to spin
excitations (a result that finite size scaling calculations
confirm) [6]. Secondly, there is (at least) one vanishing
charge mode (bonding) as k, ~ 0 [16]. Thirdly, there
is no sign of 2kf charge gapless modes. All of these
features are consistent with a spin liquid state with
dominant superconducting correlations. We should note
the existence of a dip in the bonding charge mode in

Fig. 3 which may be related to the fluctuations in pair
density described above (more detailed descriptions of
these results are given in [6]).

The final results we present are direct numerical cal-
culations of various correlation functions obtained using
the density matrix renormalization group approach [17];

and varying J/r from 0.5 to 4.0. In this case anomalous
Ilux quantization is exhibited for J/t = 0.5, while for
J/r = 4.0 L[Eo(iIi) —Eo(4 = 0)] appears to scale to
a Hat function, consistent with the existence of a phase
separated region (D, = 0).

Except for the region believed to be phase separated,
the form of the curve L[Eo(iIi) —Eo(iIi = 0)] may be
easily extrapolated to the thermodynamic limit, thereby
allowing an accurate determination of D, . In a future
publication [13] we analyze the specific values in more
detail but for this Letter we emphasize that D, scales to a
finite value in the regions which are not phase separated.

The second form of evidence for a superAuid density
lies in the behavior of the low energy spin and charge
modes which can be used to characterize the possible
phases of a particular model. The one-dimensional ana-

log of a superconductor has one gapless charge mode at
zero momentum, a gap to all spin excitations and domi-
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FIG. 3. Spin and charge excitation modes of a 2 X 10 ladder
versus momentum k„(in units of vr); (n) = 0.8 and J/t = 1.0.
The quantum numbers associated with the various symbols are
shown on the plots. The continuous lines are included as a
guide to the eye.
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FIG. 4. Log-log plot of various correlation functions versus
~

i —j ) (real space separation) for a 2 X 30 open chain with
(n) = 0.8 and I/t = 1.0. The dashed line has a slope —2 and
the dotted line —1. The correlation functions are explained in
the main text.

this technique allows much larger systems to be con-
sidered than is possible with exact diagonalization tech-
niques. We present three types of correlations: Firstly,
the equal-time rung-rung pair-held correlation function

(5;AJ) where EJ = (c~ &.Ic) 2.t cj t.tcJ2.1) i and j are
rung indices and 1 and 2 indicate the chain; this cor-
relation function then creates a singlet pair on rung j
and removes a singlet pair from rung i, a direct mea-
sure of the motion of hole pairs in the spin-gapped state.
The second correlation function that we consider is the
spin-spin correlation function S,' . S~ along one of the
chains. Finally we measure the density-density correla-
tions along one of the chains defined by (p; ~ p~ I) where

t
P; 1

—Z ~ Ci, l o-Ci, l;o. ~

In Fig. 4 we show the results of a direct calculation of
these correlation functions for a 2 X 301adder with open
boundary conditions and (n) = 0.8 and J/t = 1.0, i.e.,
corresponding to the region where we expect superAuid
behavior. The most immediate feature of the results is the
fact that of the two-fermion operator correlation functions,
the pairing correlations are longer range than the others,
decaying slower than ~i

—j( '. Note that the (i —j(
decay of the charge density-density correlations is just
the usual leading behavior; the "2kf = kf + kf" charge
and spin correlations (indicated by the oscillations in the
correlation functions) appear to decay exponentially. The
fact that the pair-field correlations decay more slowly than
~i

—j~ implies that 0 ~ 1, and therefore the pairing
correlations decay more slowly than the "4kf charge-
density-wave" correlations. These results are then further
evidence for dominant superconducting correlations with
a spin singlet (gapped) wave function.

In summary, we have presented three independent
forms of evidence for a superAuid density in hole-doped
t-J ladders. Firstly, we have shown the existence of
anomalous Aux quantization and a well-converged and
finite D, . Secondly, we have studied the low lying
modes, finding a spin-gapped state with a gapless charge
mode and no gapless 2kf excitations. Finally, we have
presented direct calculations of correlation functions,
showing long range pairing correlations and exponentially
decaying spin correlations.
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