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Using a nonperturbative approach we examine the large frequency asymptotics of the two-point level
density correlator in weakly disordered metallic grains. We find that the singularities of the structure
factor at the Heisenberg time (present for random matrix ensembles) are washed out when conductance
is finite. The results are nonuniversal (they depend on the shape of the grain and on its conductance),
though they suggest a generalization for any system with finite Heisenberg time.
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A great variety of physical systems are known to ex-
hibit quantum chaos. The common examples are atomic
nuclei, Rydberg atoms in a strong magnetic field, elec-
trons in disordered metals, etc. [1]. Chaotic behavior
manifests itself in the energy level statistics. It was a
remarkable discovery of Wigner and Dyson that these sta-
tistics in a particular system can be approximated by those
of an ensemble of random matrices (RM). Here we con-
sider deviations from the RM theory, taking an ensemble
of weakly disordered metallic grains with a finite conduc-
tance g as an example. The results seem to be extendable
to general chaotic systems.

There are two characteristic energy scales associated
with a particular system: a classical one E, and a quantum
one. The quantum energy scale is the mean level spacing
A. 1In a chaotic billiard, for example, E. is set by the
frequency of the shortest periodic orbit. Well-developed
chaotic behavior can take place only if E. > A.

In a disordered metallic grain the classical energy
is the Thouless energy E. = D/L? where D is the
diffusion constant and L is the system size. For a
weakly disordered grain the two scales are separated by
the dimensionless conductance g = E./A > 1 [2]. For
frequencies w << E. the behavior of the system becomes
universal (independent of particular parameters of the
system). In this regime in the zeroth approximation the
level statistics depend only on the symmetry of the system
and are described by one of the RM ensembles: unitary,
orthogonal, or symplectic [3].

One of the conventional statistical spectral characteris-
tics is the two-point level density correlator

K(w,x) ={ple + w,H + x8H)p(e,H)) — A2, (1)
where H is the Hamiltonian of the system, 8H is a
perturbation, x is the dimensionless perturbation strength,
and p(e,H + x6H) = Tr 8(e — H — x8H) is the x-
dependent density of states at energy €. It is convenient to
introduce the dimensionless frequency s = /A and the
dimensionless correlator R(s,x) = A?K(w,x). Dyson
[4] determined R(s,x = 0) for RM. For example, R(s, 0)
in the unitary case plotted in the inset in Fig. 1 is equal to

R(s,0) = 8(s) — sin*(ws)/(ms)>. 2)
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Perhaps the most striking signature of the Wigner-Dyson
statistics is the rigidity of the energy spectrum [5].
Among the major consequences of this phenomenon are
the following: (a) the probability to find two levels
separated by w < A vanishes as w — 0; (b) the level
number variance in an energy strip of width NA is
proportional to InN rather than N; and (c) oscillations in
the correlator R(s,0) in Eq. (2) decay only algebraically.
In the two level structure factor [6] S(7,x) =
[*.. dsexp(is)R(s,x) the reduced fluctuations of the
level number manifest themselves in the vanishing of
S(7,0) at 7 = 0, and the algebraic decay of the oscil-
lations in R(s,0) leads to the singularity in S(7,0) at
the Heisenberg time 7 = 2. In the unitary case, e.g.,
S(7,0) = min {|7|/(27),1}. At 7 < 27 this Dyson
result was obtained by Berry [7] for a generic chaotic sys-
tem by the use of a semiclassical approximation. To the
best of our knowledge nobody succeeded in analyzing the
behavior of S(7,0) around 7 = 27 using this formalism.
Wigner-Dyson statistics become exact in the limit g =
E./A — . We consider corrections to these statistics
for finite g. One of the better understood systems in
this respect is a weakly disordered metallic grain. For
frequencies much smaller than E. the statistics are close
to universal ones, the corrections being as small as (s/g)?
[8]. At s > 1 the monotonic part of R(s,x) can be
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FIG. 1. Structure factor in quasi-1D case for unitary symme-
try (solid line) and the universal structure factor (dashed line).
Inset: the two level correlator as a function of level separation.
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obtained perturbatively [9],
R,(s,x) =N Z[aﬂ'z(—is + x2 + eM)2]7I, 3)

where €,, are eigenvalues (in units of A) of the diffusion
equation in the grain, @ = 2 for the unitary ensemble, and
a = 1 for the orthogonal and symplectic ensembles [10].
At this point we can define

E. = e A7, g = € /72, 4)
where €; is the smallest nonzero eigenvalue. Perturbation
theory allows one to determine S(7,0) at small times
7 < 1. Since the oscillatory part of R(s, x) is nonanalytic
in 1/s, it cannot be obtained perturbatively.

In this Letter we obtain the leading s >> 1 asymptotics
of R(s, x) retaining the oscillatory terms [11] and monitor
how the singularity in S(7,0) at the Heisenberg time
is modified by the finite conductance g. We make
use of the nonperturbative approach [12] that is valid
for arbitrary relation between s and g. The oscillatory
part Rosc(s,x) = R(s,x) — R,(s,x) for the unitary (u),
orthogonal (o), and symplectic (s) cases is equal to

cos(27rs)
= — P(s,x), 5
R (s, x) 272y |2 (s,x) (52)
cos(Qms) ,

R = -2 p b
osc (55.%) Tty (s,x), (5b)
, cos(7rs) cos(2ms) 5

R’ (s = ———— P(s - ,x), (5
ose (85 %) N (s,x) TN P<(s,x), (5¢)

where y = x? — is, and P(s,x) is the spectral determi-

nant of the diffusion operator
s \2 2\
P(s,x) = l_[ (—) + (1 + —) . (6
e, #0L N Eu €u
Note that Eq. (3) expresses R,(s,x) through the Green
function of this operator. Thus, regardless of the spectrum
€u, Rp(s,x) and Ry (s, x) are related:
1 1 9*In[P
R,(s,x) = N - Pl 0] o)

am?y? 2am? 352

It follows from Egq. (6) that P(s,x) decays exponen-
tially at s > g. As a result, the singularity in S(7,0)
at the Heisenberg time is washed out: S(7,0) becomes
analytzc around 7 = 27. The scale of smoothening of
the singularity is 1/E. (see Fig. 1). At 1 < s < g the
sums of Egs. (5) and (3) gives the leading high frequency
asymptotics of the universal result, for s > g it coincides
with the perturbative result R, (s, x) of Ref. [9].

In a closed (Dirichlet boundary conditions) d-di-

mensional cubic sample €, = gw?i#%, where n =
(n1,...,ng) and n; are non-negative integers. For
s> g and d <4 we have P(s,0) = exp{—m(s/
7g)2J[T(d/2)d sin(mrd /D). Atl < s < g
sin2(7rs) sin?(7rs)
R(s,0) = — 8
(s,0) (s)? g2 Z (72 nz)z ®)

This result was shown in Ref. [8] to be vahd even for s <
1. One can assume that the sum of Egs. (5a) and (3) gives

the correct g >> 1 asymptotics at arbitrary frequency for
the unitary ensemble. Recall that the lowest order of
perturbation theory for 7 < 27 gives the exact result
S(7,0) < 7.

Now we sketch the derivation of our results. Consider
a quantum particle moving in a random potential V(7).
The perturbation acting on the system is a change in
the potential V(7). Both V() and 8V(7) are taken
to be white noise random potentials with variances
(VFEWV( ) =8F — r')/2mvT and (S V(¥ )6V(r ) =

xX2A8(F — r)/(Qmy), AT <1, (V(F )6V(r )) =0,
where () denotes ensemble averaging and v is the density
of states per unit volume. The dimensionless perturbation
strength x? is assumed to be of order unity.

We use the supersymmetric nonlinear o model intro-
duced by Efetov [12], and follow his notations everywhere.
One can show that for the system under consideration the
o-model expression for K(w x) is given by

Kw,x) = =50 [ DO expl~Fs (M)} |

(9)
The 8 X 8 supermatrix Q(7 ) obeys the constraint Q2 =
and takes on its values on a symmetric space H = G/ K
where G and K are groups [13]. In the unitary case
H =U1,1/2)/U(1/1) ® U(1/1) [14]. The integration
measure for Q in Eq. (9) is the invariant measure on H
and

Fj(A) = —

8 dr STr{D(VQ)z + 2iwAQ + iJAKQ

2A
- XT(AQ)Z}. (10)

The hierarchy of blocks of supermatrices is as fol-
lows: advanced-retarded (AR) blocks, fermion-boson
(FB) blocks, and blocks corresponding to time re-
versal. A = diag {1,1,1,1,—1,—1,—1,—1} is the
matrix breaking the symmetry in the AR space;
k = diag {1,1,—1,—1,1,1,—1,—1} is the symmetry
breaking matrix in the FB space.

The large frequency asymptotics of K(w,x) can be
obtained from Eq. (9) by use of the stationary phase
method. Perturbation theory corresponds to integrating
over the small fluctuations of Q around A [12],

0 B
P=<B o)’ (11)

where the matrix P describes these small fluctuations.

Q = A is not the only stationary point on H. This fact,
to the best of our knowledge, was not appreciated in the
literature. The existence of other stationary points makes
the basis for our main results.

It is possible to parametrize fluctuations around a point
Qo in the form Q = Qo(1 + iPy) (1 — iPy)”'. Expand-
ing the free energy F; in Eq. (10) in Py we would ob-
tain the stationarity condition 8F;/dPy = 0. This route,
however, is inconvenient because the parametrization of

0= A +iP)(1 — iP)" !,
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Py will depend on Qp. Instead we perform a global co-
ordinate transformation on H that maps Qp to A, Q¢ —
T 0~1Q0To = A. We note that the matrices A and —Ak
belong to H, and the corresponding terms in Eq. (10) can
be viewed as symmetry breaking sources. This transfor-
mation changes the sources but allows us to keep the
parametrization of Eq. (11) and preserves the invariant
measure. Introducing the notation Qp = Ty "ATy and
Oax = Ty 'AkTy we write K (w, x) in the form of Eq. (9)
if F;(A) is substituted by F;(Q4) given by

F;(0p) = %fd; STI‘{D(VQ)2 + 2iwQAQ

2A
+ iJOAQ — %(QAQV}. (12)

The stationarity condition dF;(QA)/0P|p—¢ = 0 implies
that all the elements of Q5 in the AR and RA blocks
should vanish [this can be seen from Eq. (11)].

Here we discuss in detail only the calculation for the
unitary ensemble. The calculation for the other cases
proceeds analogously, and we just point out the important
differences from the unitary case.

In the unitary case the only matrix besides A that
satisfies the stationarity condition is Qp = —kA = A.
In this case Qarx = —A. All other matrices from H
contain nonzero elements in the AR and RA blocks. Both
stationary points contribute substantially to K(w, x).

Consider the contribution of Op = A to K(w, x) first.
We substitute Qp = —kA and Qxr = — A into Eq. (12),
expand F(Qx) to the second order in B and B, and substi-
tute it in Eq. (9). Expanding B(7) in the eigenfunctions
of the diffusion operator, B(F) = X, ¢,(7)B,, we ob-
tain

RY (s,x) = ?}tf DB(ZA#)Z exp(—27r{—is
"

+ DlenAu + Y IBY P + lefEP]}), (13)
i

where y =x? —is, y*=x>+is, and A, =
STr (B,B,)/2. We have to keep x? finite to avoid
the divergence of the integral over B(l)l caused by the
presence of the infinitesimal imaginary part in s. One can
take the x> — 0 limit only after the integral in Eq. (13) is
evaluated.

Since the free energy in Eq. (13) contains no Grass-
mann variables in the zero mode they have to come from
the preexponent. Therefore out of the whole square of
the sum in the preexponent only the terms containing all
four zero mode Grassmann variables contribute. In these
terms the prefactor does not contain any variables from
nonzero modes. Thus the evaluation of the Gaussian in-
tegrals over nonzero modes yields the superdeterminant
of the quadratic form in the exponent. Supersymmetry
around A is broken by s, therefore, this superdetermi-
nant differs from unity and is given by P(s,x) of Eq. (6).
Evaluating the integral we arrive at Eq. (5a).

904

In quasi-1D for closed boundary conditions and x = 0
the spectral determinant P(s,0) can be evaluated exactly,
and from Eq. (5a) we obtain

s(2
RrSSC(S,O) _ S COS( '7TS)

2gm?s? sinhz(\/—%> + sin2< 2%;)
For Qp = A the same procedure as used above leads
to Eq. (3), which coincides with the result of Ref. [9].
The behavior of S(7,0) at 7 = 0 and 7 = 27 is asso-
ciated, respectively, with R,(s,0) [Eq. (3)] and R (s, 0)
[Eq. (5a)]. In other words, the singularity at the Heisen-
berg time is determined by the contribution to R(s,0)
from A. It is clear that the cusp in S(7,0) at 7 = 27 will
be rounded off because R% (s, 0) decays exponentially at
large s. The scale of the smoothening is of order 1/g.
The Fourier transform of Eq. (14) (see Fig. 1) is

(14)

< (=1)"exp(—m?n’glt]) 2]
S + 1,05 = - - —.
i (27 )i gl 72gn sinh(7rn) 41
(15)

Even though Sip (27 + 1,0); appears to be a function of
2], it is regular at ¢ = 0.

We can also estimate S*(27r,0)3 in any dimension. It
is proportional to 1/g of Eq. (4) and is given by

1 =tin gy z€1 72 -
- 47T4g [700+i77 2—2 l_[ (1+[—1} )

e, #0 €un

S“Q2m,0)4

Consider now T-invariant systems. For the orthogonal
ensemble there are still only two stationary points on H:
A and A. To determine the contribution of the A point we
use the formula Eq. (12) with Oy = A and Qs = —A
and Efetov’s parametrization for the perturbation theory
[12]. The calculations are analogous to those for the
unitary ensemble and lead to Eq. (5b). The contribution
of Qp = A gives Eq. (3). At 7 = 24 the third derivative
of S(r,0) for the orthogonal ensemble has a jump. This
singularity also disappears at finite g.

In the symplectic case there are three types of station-
ary points which correspond to singularities in the struc-
ture factor S(7,0) at 7 = 0,7,27 [3]. The 7 =27
singularity corresponds to Qa = A, and its contribu-
tion to R(s,x), given by the second term in Eq. (5¢),
is exactly the same as RQ.(s,x). The stationary point
Qa = A corresponds to the 7 = 0 singularity in S(7,0)
and leads to Eq. (3). The 7 = #r singularity corre-
sponds to a degenerate manifold of matrices Qp on H
QA = diag (T,;,, ]12, —Th, _ﬂz), QkA = —kQA, where ﬂz
is a 2 X 2 unit matrix, 75 = (m,n)7x + (m,n)y7y,
m?,n?> = 1, and 7,, are Pauli matrices in the time-
reversal block. The calculation proceeds as before and
leads to the first term in Eq. (5¢). In quasi-1D we can ob-
tain the leading contribution to the structure factor S(7,0)
around 7 = 7

*  —4sin®(gltlz)dz
S(r + = + .
S'(t + ,0) fo ety ey SR LUEL)
+0(1/g). (16)
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The result is plotted in Fig. 2. In all dimensions the
logarithmic divergence in the zero mode result is now cut
off by finite g, and S*(7,0) o Ing.

In conclusion, we mention several points about our
results. (1) Equation (5) describes the deviation of the
level statistics of a weakly disordered chaotic grain from
the universal ones. This deviation is controlled by the
diffusion operator. This operator is purely classical. It
seems plausible that the nonuniversal part of spectral
statistics of any chaotic system can be expressed through
a spectral determinant of some classical system-specific
operator. If so, the relation Eq. (7) should be universally
correct.

(2) The formalism used here should be applicable even
to the systems weakly coupled to the outside world (say,
through tunnel contacts). As long as the level broad-
ening I' (w = Rw + il') is smaller than Ax? the in-
tegration over the zero mode variables in Eq. (13) is
convergent. The integral over the other modes is al-
ways convergent provided I' < E,.. Thus the presence
of a perturbation can effectively “close” a weakly coupled
system. Under these conditions Eq. (5) remains valid af-
ter the substitution cos(27s) — exp(—27I'/A) cos(2ws)
and x> — x* — T'/A.

(3) The classification of physical systems into the three
universality classes (unitary, orthogonal, and symplectic)
may be an oversimplification. A system subjected to a
magnetic field remains orthogonal for short times and has
the unitary long time behavior. The crossover time is set
by the strength of the magnetic field. For a disordered
metallic grain in a magnetic field this characteristic time
is ic/eHD. For w > DeH/kc the system effectively
becomes orthogonal. This implies that even if we neglect
the spatially nonuniform fluctuations of the Q matrix the
cusp in S(7,0) at 7 = 27 will be washed out on the scale

—_ T T
o | |
m- ‘\ T
A \ 2F
E 0 y ™ -
] N ~
= N\ o 1
+ \
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n N n T
0.9 - < -
1 \\h‘~._
0 0.6 gt

FIG. 2. The structure factor for the symplectic case in quasi-
1D (solid line) and the universal result (dashed line). Inset: the
universal structure factor.

of Alic/eHD [the jump in the third derivative of S(7,0)
will still remain]. For the system to behave as unitary
at w = E. the magnetic length /ic/eH has to be shorter
than the size of the system. The spin-orbit interaction
that causes the orthogonal-to-symplectic crossover can be
considered analogously.

(4) The rounding off of the singularity in S(24r,0) is
also present in the RM model with preferred basis [15].
Our results differ from those in Ref. [15] substantially.
Thus finite g is not equivalent to finite temperature for the
corresponding Calogero-Sutherland model [16].
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