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A model for copper-oxide metals with large local repulsion on copper and Coulomb interaction
between ions is solved systematically to get the leading low-energy behavior of physical properties.
The one-particle spectra is of a marginal Fermi liquid at the density where mean-field solutions display

a valence degeneracy of copper ions.
electronic energy scale.

PACS numbers: 71.27.+a, 74.25.]Jb

Landau Fermi-liquid theory and associated quasiparti-
cle concepts appear not to be valid in the normal state of
copper-oxide metals [1-3]. A useful guide in the pursuit
of the theory of these metals and their superconductive
instability is that these phenomena do not occur in other
transition metal oxides, or sulfides or selenides, etc., either
quasi-two-dimensional or three-dimensional. The appro-
priate model for copper oxides should then have special
features rooted in their special chemistry.

At half-filling the copper oxides are antiferromagnetic
insulators with the lowest one-electron excitations on
Cu (Cu™t — Cu™) and the lowest one-hole excitations
on oxygen (O~ — O7). The lowest optically active
particle-hole excitation has the charge-transfer character
(Cu**O~™~ — Cu*0O7) with an energy ~1.8 eV. The
ionic contribution to these excitations due to Coulomb
interactions, i.e., the difference in Madelung energy on
Cu and on oxygen is estimated [4] to be much larger,
~10 eV. The principal physical feature of one of the
models [5] proposed for copper oxides is that, in this
unique situation, long-range ionic interactions, besides
the on-site repulsion on the copper d orbitals, play a
crucial dynamical role for the low-energy excitations in
the metallic state. The model is given by the Hamiltonian

H = Z td pje + He) + Ag Z(nf - njp)
(ij)o J

+ U nhnl + VD nin], )
J (ij)

where d* creates holes on the copper d,2— 2 orbitals, p*
creates holes on the oxygen p orbitals, and #,, are nearest
neighbor hopping integrals. U — oo corresponds to the
neglect of Cu™* ™" states. The model cannot be reduced,
in the metallic state, to the Hubbard model for V = Ay, ¢,
where new physics might be expected.

Several mean-field calculations [6,7] (Hartree-Fock,
Gutzwiller variational, large N slave boson, etc.) on
the model of (1) reveal that, as the density of holes
is increased in the metallic state, the energy of the
CuttO™~ — Cu*O~ excitation decreases due to the
ionic interactions. The energy is bistable as a func-
tion of the ratio of holes on oxygen to holes on Cu,
(no/ncy), beyond some density x of holes, defined as
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The metallic state is unstable to superconductivity with an

{(ncy) + {(no) = 1 + x. For some concentration x. two
degenerate values of (np)/(ncy) result. The bistability
ends at a critical point near which RPA [6] and slave
boson calculations [7] show a superconductive instabil-
ity promoted by charge-transfer excitations. (no)/{(ncu)
is coupled to the uniform density leading to phase sepa-
ration. Numerical diagonalization of the model [8] for a
small number of atoms in the ring geometry gives similar
results as well as long-range superconducting correlations.

Here, we consider a more general model by replacing
the interactions V by Coulomb interactions between
the ions, because, as seen below, precise satisfaction
of the screening conditions in the metal is crucial to
eliminate phase separation [9] in the model. Their
intracell parts are handled by a constraint on the states
allowed in a cell. In mean-field calculations on the
resulting model, a local valence instability, where Cu™™
ions with their associated ionic screening and polarization
become degenerate with Cu* ions with their associated
screening and polarization, again arises for some deviation
x from half-filling. Such a degeneracy puts in jeopardy
the assumption of adiabaticity as a function of the ionic
interactions in Landau theory [10]. Fluctuation near the
point of degeneracy have singular low-energy resonances
of a form that systematic calculations are possible.

We start by defining a basis set by diagonalizing states
of a cell i by putting the kinetic energy terms connecting a
cell i to its neighbors to zero and keeping the low energy
states. We interpret V in (1) as the intracell part of the
Coulomb interactions [screened by processes at energies
larger than O(z)]. We work at an average occupation of
(1 + x) holes per cell as required by (1 + x) negative
charges per unit cell assumed uniformly distributed by
imposing a chemical potential w. The minimum basis
set must then include one-hole and two-hole states per
unit cell. The zero-hole state |0); as well as three or
higher hole states are then costly in energy compared
to the one-hole and two-hole states by O(V). They are
excluded as is due to U — oo, the two-hole state on Cu.
The allowed low-energy states are the one-hole state on
Cu denoted by dfm»!O) , the one-hole state on the linear
combination of oxygen orbitals in the cell i that hybridizes
with the Cu orbital in cell i denoted by d5,;|0), and
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the two-hole singlet states ¢1;|0) and ¢5;|0), which are,
respectively, the singlet with one hole on Cu and the other
on the oxygens and with both holes on oxygens [11]. The
¢,’s should be thought of as hard core boson operators.
d5,;10) is the lowest of the one-hole oxygen states by
virtue of its hybridization to dlt,,-|0>. The bare operators
in (1) expressed in terms of the constrained operators are

di, = ¢\idri—o; Pl = ¢lidiic + dridri—o, (2)

where P;, is the linear combination of P;,, which
hybridizes with d; .

The allowed states in a cell i must fulfill the complete-
ness relation or constraint

i+ ppi =1, 3)

where lﬂ,‘ = (d11d11d2]d21)i and ¢i = (¢1¢2),‘. The ki-
netic energy in (1) mixes the one-hole and two-hole sec-
tors in the same and neighboring cells. Using (2),

H, = Z tij idaoi(d)y ;1 + dyyjha) + He. (4)
(ij).o

Here both j = i and j nearest neighbors to i are summed;
t;; differs from ¢ by numerical constants, which depend
on lattice structure. The kinetic energy in (1) also
operates on the one-hole states of neighboring cells i
and j, creating the disallowed states |0); or di;yd1;— o |0).
Eliminating such high-energy states leads to a low-energy
sub-Hamiltonian, acting on the space of singly occupied
cells, which is a straightforward generalization of the
Heisenberg Hamiltonian

Hy = — JZ(Z afwit.ftp,-(,T)
i \or
X Z aT"#]i)"ﬂ‘ﬂiG’“f’) ) (Sa)
= —J> 0 -0 o)1 — A7), (5b)
(i)

In (5) o’s and 7’s are Pauli matrices in spin and d; — d»
space, respectively, J = 0(¢>/V). Equation (5a) exhibits
the singlet valence bond form suggested by Anderson and
collaborators [12]. a, and the anisotropy tensor A arise
because the local Hamiltonian of a cell i is in general not
rotationally invariant in 7 space. It is very important,
however, that at the valence degeneracy point defined
below, where the effective local Hamiltonian is diagonal,
A has only a uniaxial anisotropy: A = (1,1, A).
The second term in (1) transforms to

Hz = Ap Z[(nu — ny) — 2¢5 bl (6)

The total Hamiltonian is H = H; + H, + H;. For A >
t,J and x = 0 (half-filling), H reduces to the Heisenberg
Hamiltonian J(—1 + o - o) for low energies.

We now perform a standard mean-field calculation [13]
together with fluctuations about it by introducing fields

+
8ij = \]Zaflpi(”—lpjor
o,

=D Yio(el1 + 57050, (Ta)
M} = ;" {m}y; . (7b)

Here {m} = 1, 7,0, o7. Also, we introduce a Lagrange
multiplier A; to enforce the constraint. We look for
a solution with spin singlet in the (i — j) bond as in
(7a). The only nonzero mean-field components of {M}
found in the mean-field solution are the components of
7, which are taken as 7, and T,. This requires only
that / = tx. Both (6) and (5b) favor spatially uniform
T, and T,. The free energy has a saddle point at the
uniform state A; = Ao, &;; = & for i, j nearest neighbors,
di1 = &1, P2 = ¢pr. The mean-field Hamiltonian for
fermions diagonalized to momentum space (k) is

Hup = 2 ¥al(£° (k) = A1 + (he(k) + JAT,)7,
ko
+ (hx(k) + JTx)TX]wok > (8)
where 7 is quantized along the x axis and
he(k) = —20.47,
hy(k) = Ao + txp1pa + & )]

The mean-field energy may now be minimized with re-
spect to Ao, ¢1, d2, T, Ty, and e(k). The details of this
calculation will be presented elsewhere. The chemical po-
tential w is fixed so that ¢12 + ¢22 = X; Ao determines
the occupation > (¥t ,) = 1 — x. Luttinger’s theo-
rem for the physical particles is then satisfied. The co-
efficients of the “external fields” 4, and h, are functions
of the concentration x. As x increases ¢ ¢, and ¢12 in-
crease so that at a critical value x = x, may be found
where h,(0) = 0. At this point the model has rotational
symmetry about the 7 axis.

Consider next, the fluctuations about the mean-field
solution. The fluctuation Hamiltonian is given by the
harmonic Hamiltonian of the fields ¢, and {M} and the
linear coupling of the fields to the fermion eigenstates of
H, obtained by expanding (4), (5), and (6) about the
mean field. Given the constraint (3), the fluctuations in the
density [m = 1in (7)] in a cell from its average value are
the fluctuations between the one-hole density (,//i+ Y; and the
two-hole density ¢, ¢;. These couple to the long-range
Coulomb (7 ~!) interactions, and lie near the plasma energy
w, and can be ignored. Were we to ignore Coulomb
interactions, such fluctuations would constitute the zero-
sound modes, whose velocity would be suppressed to zero
[7]1 as the charge transfer (7 modes) considered below
comes down in energy. This leads to phase separation
in models without Coulomb interactions. Note that the

density of charge excitations is x per unit cell. So w? ~ x.

p
The other collective modes, evident from the con-
straint (3), are the internal d; — d, fluctuations, the

phase modes of ¢’s, and the internal ¢, — ¢, modes.
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Local gauge invariance requires the phase of all opera-
tors to be identical. Because of finite {(¢;) and the resul-
tant finite Ao, the phase modes are massive [7] and can
be ignored. A leading order calculation of (d)f?(t)d)gj(O))
using H; shows that they are proportional to the particle-
hole excitation spectra of a Fermi liquid that is broad and
incoherent. There are three kinds of d — d modes ex-
pected from Hj, Eq. (5). The charge-transfer fluctuation
(7) modes, the spin fluctuation (o) modes, and the cou-
pled spin and charge transfer (ov) modes. Because of
finite (7) in the mean-field calculation, the latter two are
mutually coupled, but they are uncoupled to the 7 modes
and are in general massive.

Now we calculate the D, g(q, w) = (747g) (¢, ®) fluc-
tuations by eliminating the linear coupling of 7’s to ¢’s
and ¢’s. The (7,7,) modes are always massive because
there is a field in the 7, direction. Consider the point
x = x., where, as mentioned, the model has rotation sym-
metry about the 7, axis. Two sets of modes must now be
distinguished, the amplitude modes and the phase modes
in the 7, — 7, plane. The amplitude modes (taken to be
{7, 7,)) are in general also massive. Because of rotational
symmetry, the phase mode (7, 7,) is required to be mass-
less at ¢ = 0. However, this mode is not the mode of a
conserved quantity and is therefore damped. Near x = x.
and at temperature zero, the phase mode is

B~ 1
io/y(q) + a’q* + G(x)’
for w < vpgq. (10)

In (10) B is of the order of the bandwidth and a of
a lattice constant. G(x) — 0 as x — x.. The “gap”
G(x) = |Ag + 4tx|/B. The damping y(gq) is given by
vo for vpq = yo and by Landau damping ~(vrgq) for
Vrq = 7o, where vy is due to disorder or inelastic
scattering. Collective modes of the type (10) violate
Landau’s adiabaticity criteria for d = 3. If we approach
x. from x > x., where the effective field on 7, is opposite
in sign, the same phenomena occurs. Thus x = x, is an
isolated critical point at 7 = 0.

The physics of the new results may be best discussed
by comparing it with the charge transfer instability already
found by standard RPA calculations [6] and by auxiliary
boson methods [7] followed here on the model of Eq. (1).
Detailed numerical calculations were reported which show
that the instability is possible for reasonable parameters.
The differences here from previous calculations is that the
use of Coulomb interaction (a) eliminates phase separa-
tion, and (b) the long-range interactions are handled by
a constraint, Eq. (3), which operates on both oxygen and
copper states rather than copper states alone. The inter-
esting degrees of freedom per unit cell are represented by
the pseudo-spin 7, which expresses both charge transfer
and current degrees of freedom rather than an Ising de-
gree of freedom representing charge transfer alone. The
general Hamiltonian in 7 space is a uniaxially anisotropic
interaction Hamiltonian with an “external” field in an ar-
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bitrary direction. As a function of electron concentration
the field aligns with the anisotropy axis at x = x.. At this
point we have a massless phase degree of freedom at long
wavelengths. The phase diagram is different from the ear-
lier calculations [6,7] in an essential way: Instead of a first
order transition ending at a critical point, which must be
reached by varying more than one parameter, we have a
critical point at 7 = 0 reached only by varying x in the
model studied.

The critical mode is at ¢ = 0, but it is an internal
(breathing) mode of the unit cells. It does not couple to
the uniform density, and no third order invariant appears
allowed. If there is no significant nesting in the band
structure, no mixing of the critical mode with charge
density or spin-density modes at finite g occurs.

The interaction of fermions with bosons of the form
(10) is being thoroughly investigated [14—16]. The lead-
ing term in the self-energy for the one-particle Green’s
functions calculated by second order perturbation has the
marginal Fermi liquid [3] frequency dependence [14—-16]

S(w) ~ wlnw + iwsgnw , (1D

at x = x., with a negligible momentum dependence for
d = 3. For uniaxial anisotropy in d = 3, (10) should
be generalized by a’q* — alq? + alq} and y(q) =
Yo + Vr,q; + vppqp. Then X (w) ~ wlnw for yo =
0, as well as for the case vr,q, << vy provided a%q?c =
w. Here g, is the upper cutoff in g,. Note that
since the stiffness in the collective modes comes from
the (screened) Coulomb interactions, a, and a, are
expected to be of comparable magnitude. Thus even with
incoherence in the z direction, i.e., typical vp,q, <K yo, a
d = 3 calculation is appropriate.

Corrections to the second order result (11) are of
two kinds, vertex corrections and corrections due to
insertions of the renormalized fermion Green’s functions:
The simplifying feature in the problem is that with
(10), the momentum exchanged is much larger than
the energy exchanged. Both the corrections are then
unimportant [14-16] in d = 3 just as in the Migdal
argument for electron-phonon interactions. (11) then
gives the asymptotically exact dependence of the self-
energy.

The dispersion obtained from Egs. (8) and (9) has the
same symmetry as in one-electron calculations. Also the
Fermi surface encloses the total number of electrons, so
the Luttinger theorem is obeyed. However, as already
discussed the number of current carriers, or the total
metallic spectral weight in optical conductivity is x,
consistent with experiments [17]. For G # 0, Im3(w) ~
(w/G)? for w — 0 characteristic of a Fermi liquid. Thus
for x # x., a crossover to a Fermi-liquid behavior for
T = G is predicted.

Because of umklapp scattering (which is implied since
the collective modes (11) are interband modes), Eq. (12)
implies a momentum transport scattering rate ~7 in
d = 3. The necessity of umklapps in transport is also
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seen from the fact that the observed ratio of the thermal
and electrical conductivity obeys the Wiedemann-Franz
law. In YBa,Cu;0O; the resistivity in the plane p,, has
a linear temperature dependence; the resistivity perpen-
dicular to the planes p. is very sensitive to defects but
for the best samples p, = ¢; + ¢,T down to T. [18].
Coherent transport thus exists in all directions, which
means that a d = 3 theory is appropriate in the pure
limit. Then the observed resistivity, thermal conductiv-
ity, optical conductivity, Raman scattering intensity, and
the tunneling conductance near the hole density for the
highest 7. follow [3] from Eq. (11). Coherent trans-
port in the ¢ direction is lost in YBa,Cu;0- with small
amounts of disorder, and is never observed, for example,
in Bi,Sr,CaCu,04, presumably because the interplane
hopping is much smaller. In this case vp,q <K yo <
vrq appears appropriate and only the in-plane compo-
nent of momentum in the interaction of fermions with the
charge-transfer resonances is conserved. As discussed,
Eq. (11) remains valid.

Careful resistivity measurements [19] have recently
clarified that the linear temperature dependence of pg
is observed down to 7. only near the density of high-
est T, with higher temperature dependence at low tem-
peratures not inconsistent with a Fermi liquid around it.
(The effects of disorder are also prominent at lower den-
sities.)  This is consistent with the developments here;
a marginal Fermi-liquid behavior is to be expected only
for T = G(x) with a crossover to Fermi liquid at lower
temperatures.

The charge transfer fluctuations also provide an effec-
tive interaction in the particle-particle channel, for parti-
cles of momenta k,k + g on the Fermi surface, just as
found earlier [6,7],

Vpp(k’k + (I) -~ D(Qs €k — 8k+q)- (12)

Since vertex corrections merely renormalize the coupling
constant, an Eliashberg theory for superconductivity can
be formulated. The absence of pair amplitude on Cu,
because U = oo, requires that the gap pair wave function
W(k) =Y (crocri—o) have >4 (k) = 0, where the sum
is over the entire Brillouin zone. So simple s-wave
pairing is ruled out. The most likely pairing is of a
generalized s-wave type [6,7], in tetragonal crystals. For
generalized s waves the surface at which A(k) goes
through zero may or may not intersect the Fermi surface.
If it does the density of states in the superconductive state
(for pure samples) is linear in energy; if it does not, a
BCS-like gap (anisotropic, in general) is expected.
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