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Spectral Function of the 1D Hubbard Model in the U —.+~ Limit
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We show that the one-particle spectral functions of the one-dimensional Hubbard model diverge at
the Fermi energy like ~co —eF~ Is in the U ~ +~ limit. The Luttinger liquid behavior ~co

—eF~
where a ~ 1/8 as U ~ +~, should be limited to ~to —eF~ —t /U (for U large but finite), which
shrinks to a single point, co = eF, in that limit. The consequences for the observation of the Luttinger
liquid behavior in photoemission and inverse photoemission experiments are discussed.

PACS numbers: 71.27.+a, 71.20.Hk, 78.20.Bh, 79.60.Fr

Because of large quantum fluctuations, the low-energy
physics of interacting electrons in 1D is not of the Fermi
liquid type, but can be described by the Luttinger liquid
theory [1—3]. According to that theory, the momentum
distribution function should have no step at kF but should
behave like nk —nk, ~ sgn(kF —k) ~k

—kF ~, where n
is a nonuniversal exponent that depends on the interaction.
This has been confirmed for the Hubbard model by Ogata
and Shiba [4] in the U ~ +~ limit, in which case n =
1/8 [5]. Similarly, the local (momentum averaged) one-
particle spectral functions A(co) (inverse photoemission
spectrum) and B(co) (photoemission spectrum) defined by

A(co) = g ~(f, N + 1)ati ~O, N)) 6(co —F&+' + P& ),
f,a

B(~) = g I& f, N —Ilao, ~10, N)l'~(~ —&o + FI" ')
f,a

are expected to behave like ~co —eF ~
close to the Fermi

energy. In recent photoemission experiments, the function
B(co) has been measured over a large energy range with a
resolution of several meV [6]. Under these conditions, is
it possible to detect the Luttinger liquid behavior? The
Luttinger liquid theory itself does not predict how far
the power-law behavior will hold, and to answer this
crucial question a determination of the spectral function
for microscopic lattice models is necessary. This is a
very difficult problem. Even for the Hubbard model,
which is soluble by Bethe ansatz [7] and whose low-
energy properties are reasonably well understood [8,9],
an exact calculation of the spectral functions has not
been possible so far, although much has been done in
this direction, both analytically using bosonization [10],
canonical transformation [11],and Bethe ansatz [12], and
numerically with Monte Carlo calculations [13].

In this Letter, we present a calculation of these spectral
functions for the Hubbard model in the U ~ +oo limit.
The Hubbard model is defined by

H = —t (a;+i a; + H.c.) + U g n; tn;1, (2)

where t is the hopping integral and U is the on-site
repulsion. We will denote by N the number of fermions
and by L the number of sites (we choose L even); the site
index t runs from i = 0 to L —1. Furthermore, we take
N to be of the form 4n + 2 (n integer) so that the ground
state is nondegenerate. In the U ~ +oo limit, it has been
shown, using the Bethe ansatz solution, that the eigenstates
can be written as a product of a spinless fermion wave
function and a squeezed spin wave function [4]:

IN, f) = li/tt. ,qHI))) lrtv'(Q. fg)) (3)

The spin wave function ~g) is characterized by the number
of down spins Nl, the total momentum Q, and the quantum
number f0 within the subspace of momentum Q. The
spinless fermion part ~i/t) is an eigenfunction of N spinless
fermions on L sites with momenta kIL = 2vrI~ + Q,
where the I~, j = 1, . . . , N, are integer quantum numbers.
The two components of the wave function are coupled
through the momentum Q of the spin wave function, which
imposes a twisted boundary condition on the spinless
fermion wave function (each fermion hopping from site
L —1 to site 0 will acquire a phase e'~).

In the limit U ~ +~, all the states with different spin
configurations are degenerate and the energy is equal to

2t g coskl; i—.e., it does not depend on the quantum num-

bers fly. In the ground state, the spinless fermion wave
function

~ t/tgs t.) is described by the quantum numbers Q =
7r and JI) = i N/2, . . . , N/2 —2, N—/2 —1) so that the
distribution of the k~ s is symmetric around the origin, the
spin part being the ground state of the Heisenberg model
according to Ogata and Shiba's prescription [4].

For a less than half-filled model, the spectral function
A(to) has contributions from both the lower and upper
Hubbard bands [11] and A(co) = A" (co) + A (co).
If we use the Ogata-Shiba wave function in Eq. (1),
we get A (co) and B(co). To do this, we just write

toPerator ao entering Eq. (1) as bo Zo, where bI creates

a spinless fermion at site j and Z inserts a spin o.
after skipping the first j spins. A (to) can actually be
obtained in that framework by a minor modification of
the wave function [14]. The summation over the different
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spin configurations (fg) can then be performed because
the energy depends only on the quantum numbers (I) and

Q, and we get

3.5

A"" (or) = g C /v(Q)Ag(or), 2.5

1
A (or) =

N + 1 P D/v ~(Q)Bg g(U —or),+ '
Q, Q,-

B(or) = P D /v(Q)Bg(or),
Q, o

where Q = 2~j /(L —N + 1),j = 0, . . . , L —N. Fur-
thermore C /v(Q) and D /v(Q) are given by

,N(Q) g l(xN+1(Q, fg) lzo~ IX/v(~, 0))l, (5)
fQ

with Q =
27rj /(N + 1) (j integer) and

D,/v(Q) = P l(x~-t(Q, fg) lzo, lxw(~, o)&l',
fQ

with Q = 2vrj /(N —1), while Ag (or) is given by

p l(t//. ,g'Hl&) lbo IAGs/. &!'~(or —Ff" + &o ), (7)

and a similar definition holds for Bg(or).
The problem has now been reduced to the calculation of

quantities involving only the charge or the spin. A similar
approach has already been followed by Sorella and Parola
[15] in their calculation of the momentum distribution
function. For instance, our D &(Q) is equivalent to their
Z(Q). However, they could not calculate the spectral
function away from half filling because they did not know
how to evaluate the charge part in that case. In the
following, we show how to calculate these quantities for
any band filling.

Let us start with C /v(Q) and D /v(Q). These
quantities satisfy the sum rules gg C /v(Q) = 1 and

gg D A(Q) = N /N, and they have a singularity at

Q = AN /¹We have calculated them for small clus-
ters (Fig. 1), and we found that for Nl = Nl, in which case
Ql = Ql = 7r/2 = Qo, they behave like —IQ —Qol
with r/ = 0.49 ~ 0.01 if Q ) Qo and z/

= 0.14 ~ 0.01
if Q & Qo for Cg and r/ = 0.49 + 0.01 if Q & Qo and

z/
= 0.34 ~ 0.02 if Q ) Qo for Dg. Let us note that,

although they are very small, C /v(Q) and D /v(Q) do
not vanish identically for Q & Qo and Q ) Qo, respec-
tively, contrary to what was claimed in Ref. [15]. The
exponents of the main singularities are consistent with the
theoretical value 1/2. In Fig. 1, the solid lines are fits to
the numerical results that have been used in the following.

Let us now turn to the charge part. For Q = vr,

the only excited states that contribute are those with

1.5

0.5 .c

~ ~ ~n ~ ~ ~ ~ AW0'~ e

x/2

Q

FIG. 1. (N + 1)C z(Q) (open symbols) and (N —1) X
D &(Q) (solid symbols) for cluster sizes N = 10, 14, 18, 22,
and 26.

one particle-hole pair, and A (or) is just the spinless
fermion density of states I/zr$4t —or . The problem
is not so simple for Q 4 vr because we have to evaluate
matrix elements between states with different boundary
conditions. Let us suppose that k and k' correspond to
boundary conditions with Q and Q', respectively. Then
one can easily show that

[b
i'

b ]
—'(k' —k)/2 'lg' —g)/2 (I Q Q]/ )

L sin([k' —k]/2)
(8)

Clearly, we are faced with Anderson' s orthogonality
catastrophy [16], and states with many particle-hole ex-
citations will contribute. More generally, the matrix ele-

ment (0!bk . . bk, bk, bk bk bk !0) is given by

—/(k,
' —k, )/2;„/V Q

J
/

i k, —kl
Sln

/

k2 —kl
S1n 2

/

k, —k2
s1n

/

k2 —k2
s1n

k, —kN
s1n

/

k2 —kN
s1n

/

kN
—kl

s1n
/

~ I kN
—k2

sin
/

kN
—kN

sin

The central observation is that this determinant is very
similar to the Cauchy determinants [17] and that it can be
expressed as a product:

kj —k; kJ
—k;

sin sin i k,' —kJ
sin

2 . 2 2

where the sign is + for N = 1, 4, 5, 8, 9, . . . and —for
N = 2, 3, 6, 7, . . .. After a straightforward calculation one

!

finally gets

l(P/. g ([I]) lbo I t//Gs, /. )I
J)l

2 kJ —k;
sin 2 kJ k,

sin sin (9)
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For the matrix element entering Bg(or), a similar ex-
pression holds with X replaced by N —1. With such
an expression, it becomes possible to calculate the spec-
tral functions numerically. To do that, we generate the
quantum numbers J~ and calculate the energy and the
product of Eq. (9). It turns out that the sum rules

f Ag(or) de = 1 —N/L and f Bg(or) dor = N/L
hold separately for each Q. Moving from Q = 7r to

Q = 0, the effect of the many-particle excitations be-
comes important. The weight of the Van Hove singu-
larity decreases; a power-law singularity appears near the
Fermi energy and a tail appears beyond the Van Hove
singularity. This tail comes from the incoherent part
of Ag(k —~, or) and Bg(k —0, or), and its weight in-
creases when Q decreases. Including up to three particle-
hole excitations, we already get almost all the spectral
weight. For instance, for I. = 60 we get 99.993% of the
total weight in the worst case, namely, for Q = 0. So,
for all practical purposes, we can limit ourselves to three
particle-hole excitations. This is an important observation
because the number of states grows exponentially with the
size, and to take into account all the states is possible only
for smaller systems (L = 30).

We are now in a position to calculate numerically
A(or) and B(or), and a typical result is presented in

Fig. 2. Note that the following sum rules are satis-
fied [18,11]: f A (or) dor = 2(1 —N/L) and

f: A""'(~)d~ = f B(~)d~ = N/L
The most interesting and surprising result is that, instead

of going to zero, as the Luttinger liquid theory predicts, the
spectral functions increase when co eF, where eF =
—2t cos2kF is the Fermi energy of the spinless fermions
and kF = AN/2L is the Fermi momentum of the fermions
with spin. In fact, using the same framework, we can
prove analytically that they diverge in that limit. To do
that, we first use the fact that the low-energy spectrum
consists of towers of excitations centered at momenta

3.4

1.2

1.0

9 0.8
CQ

8
0.6

0.2

0
63/t

FIG. 2. A (or) and B(or) for the quarter-filled U ~ +~
Hubbard model with L = 260 and N = 130.

-0a- = —(Lsinmn) ~ f(Q) + O(1/L),0

where the dependence on size and filling is taken care of.
If we put it all together, we get

A-(or) =0
0

1 gF

2mu, I'(ng + 1) 27ru, sin7rn j.f(Q)

(13)
The function f(Q) for Q « L satisfies the recursion
relation

f(Q + n) = f(Q —vr) 7r g , (14)
I.(Q/27r)'

I (—Q/27r)2

where f(~) = 1, and in the interval from = 0 to vr it can
be approximated within 0.01% by

lnf(Q) = —0.3047 + 0 3248Q /7r —.0.0201Q /vr .

Finally, because of the divergence of C z(Q) and
D rv(Q) at Q = ~/2, A " (or) is dominated close
to eF by A y2(or). This function is itself dominated

by A ~2(or), which diverges with the exponent n~y2 =
—3/8 at eF. So, A (or) ~ ~or —eF~ near eF.
The whole proof can be reproduced for B(or) which also
diverges as ~or —eF~ r . Let us note that this power
law cannot be clearly identified numerically with large
but finite systems because there are other subdominant
diverging contributions.

This divergence of A (or) with exponent —3/8
is different from the prediction of the Luttinger liquid
theory according to which A" B(or) should vanish as
~or —~F ~, where n, the exponent that also enters the

(N + 1)Q/L + 4pkF, p = 0, ~1, ~2, ... , to write Ag(or)
as the sum of the contributions coming from each tower
Ag(or). The lowest excitation in tower p corresponds to
a set of densely packed quantum numbers I, shifted by p.
From the definition of the momenta k~, this is equivalent
to imposing a twist of wave vector Q + 2p7r, so that

Ag(or) = Ag+2„(or). So all we have to do is calculate

Ag(or), where Q can take values inside and outside the

first Brillouin zone. Now, Ag(or) has peaks at energies
so + j u, 2~/L, j = 1, 2, . . ., where eo is the energy of
the lowest peak in the tower. This energy is equal to
Ftr+ (Q) —Fo = eF + ~u, (1 + ng)/L, where

-0 = —' ——' 10

So ag(or) can be written as P ag6(or —ao —j u, 27r/.
L) From. Eq. (9), one can show that

(1+ ng)(2+ ng) . (j + ng)0-0 jI
a'- + O(1/I. )0

(j+ 1/2+ ng/2) 0

I (ng + 1)
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momentum distribution function, is known to be equal to
1/8 in the U ~ +~ limit. This apparent contradiction
can be lifted as follows. First, we note that the exponent
—3/8 can be explained very simply on the basis of the
Green's function of the large-U Hubbard model [9] which
is given by

el (kFL 8F ~) 1
G(x, t)—

(x u t)1/2(x u t)l/2 (x2 uzt2)1/16
'

If we set u, = 0, then A(tu) behaves like

e 1'(cu —RF) t

dtdt G(x = 0, t)e'
tS/8

while, if u, is finite, it behaves like

e i(cu —cF)tdt'dt G(x = 0, t)e'
t9/8

However, in both cases, nk behaves like
ei (k —kF)x

dxdx G(x, t = 0)e'"'—
x9/8

—~~ —.F ~'/"

So, as long as spin velocity u, & 0, or equivalently
U ~ +~, the behavior very close to eF is given by
~~a

—eF~'/, but this behavior is limited to frequencies
)ra —eF[ ~ u, —t /U. In the limit U +~, this
domain shrinks to a single point, ~ = eF, and the spectral
function diverges as ~ra —eF~ . If U is large but
finite, there will be a peak in the spectral function at
ra —t /U reminiscent of this divergence. This seems to
be consistent with the Monte Carlo results of Preuss et al.
[13], which show an increase of the spectral functions
close to the Fermi level.

The implications for the experimental observation of
the Luttinger liquid behavior are rather dramatic. To be
able to see a difference from a step function in spite of the
finite resolution, n should be large enough, which means
one should consider strongly correlated systems. But the
present calculation shows that the range of validity of
the asymptotic law (ca —eF) becomes very small if the
correlations are too big. Whether realistic models of one-
dimensional conductors with intermediate values of the
repulsion terms can lead to measurable effects remains to
be seen.

*On leave from Research Institute for Solid State Physics,
Budapest, Hungary.
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