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Bosonization of One-Dimensional Exclusons and Characterization of Luttinger Liquids
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%e achieve a bosonization of one-dimensional ideal gas of particles obeying exclusion statistics
A (so called A exclusons) at low temperatures, resulting in a new variant of c = 1 conformal field
theory with compactified radius R = Ql/A. These ideal excluson gases exactly reproduce the low T-
critical properties of Luttinger liquids, so they can be used to characterize the fixed points of the latter.
Generalized ideal gases with mutual statistics and nonideal gases with Luttinger-type interactions have
also similar low-T behavior, controlled by an effective statistics varying in a fixed-point line.

PACS numbers: 71.27.+a, OS.30.—d, 11.10.Kk, 67.40.Db

Recently a new combinatoric rule for many-body state
counting [1,2], which essentially is an abstraction and
generalization of Yang-Yang's counting [3,4] in Bethe
ansatz solvable models, is shown to be applicable to
elementary excitations in a number of exactly solvable
models for strongly correlated systems [1,2,4—7] in one,
two, and higher dimensions. This has led to the notion
of fractional exclusion statistics (FES) [1] and associated
generalized ideal gases (GIG) [2]. (For abbreviation, we
will call particles or excitations obeying FES exclusons ).
An important issue to be addressed is the relevance of
FES to realistic gapless systems, for which state counting
is somewhat obscure due to strong correlations among
particles. In this Letter, we suggest that at least for
some strongly correlated systems or non-Fermi-liquids
their low energy or low t-emperatur-e fixed point may be
described by a GIG associated with FES, similar to that
of Landau-Fermi liquids by ideal Fermi gas [8].

A well-established class of non-Fermi-liquids is the
Luttinger liquids in 1D, proposed by Haldane [9]. To pro-
duce in this case a testimony to our above suggestion, we
will show that the low-T critical properties of Luttinger
liquids are exactly reproduced by those of 1D ideal exclu-
son gases (IEG), if one identifies the controlling parameter
[9] of the former with the statistics A of the latter. So IEG
can be used to describe the fixed points of Luttinger liq
uids. A main development here is that we have succeeded
in bosonizing 1D excluson systems at low T, a la Tomon-
aga [10]. It results in a new variant of conformal field
theory (CFT) with central charge c = 1 and compactified
radius [11]R = Ql/A. The particle-hole duality between
A and I/A in IEG [4,5] gives rise to a duality between R
and 1/R in this variant of c = 1 CFT.

We have also studied the effects of mutual statistics
between different momenta and Luttinger-type (density-
density) interactions among exclusons. In both cases, the
low-T behavior is controlled by an effective statistics A,ff
for excitations near the Fermi points, the same way as
IEG by A. In 1D both the momentum independent part
of interactions and change in chemical potential p, are
relevant perturbations [8,12], resulting in a continuous
shift in the fixed-point line parametrized by A.

Consider a GIG of Np particles on a ring with size I..
Single-particle states are labeled by k;. The total energy
and momentum are given by E = gk; and P = gk;.
We assume [1,2] that in the thermodynamic limit the
density p, (k) of available single-particle states is linearly
dependent on the particle density p(k). By definition, the
statistics matrix is given by the derivative

g(k, k') = —6p, (k)/6 p(k') .

dk In[1 + w(k, T) '],

with the function w(k, T) = p, (k)/p(k) satisfying

w(k, T) [I + w(k, T)]' = e " (3)

In the ground state, there is a Fermi surface such that
p(k) = 1/27rA for )k) ( kF and p(k) = 0 for ~k~ ) kF
Then the Fermi momentum is given by kF = ~Adp,
and the ground state energy and momentum by Ep/L =
7r 2t dp/3, Pp = 0, with the average density dp = Np/L2 2 3

Now let us examine possible excitations in the IEG.
First there are density fluctuations due to particle-hole ex-
citations, i.e., sound waves with velocity v, = vF ———2k'
(see below). Moreover, by adding extra M particles to the
ground state, one can create particle excitations, and by
Galileo boost a persistent current. Our observation is that
the velocities of these three classes of elementary excita-
tions in IEG satisfy a fundamental relation that Haldane
years ago used to characterize the Luttinger liquid [9].
Indeed, shifting Np to N = Np + M, the change in the
ground state energy is 6&Ep = vr(2tkF)M, while a per-
sistent current, created by the boost of the Fermi sea k ~
k + vr J/L, leads to the energy shift BzEp = ~(kp/2t) J
[Because of periodic boundary conditions, M and J are

The system is called an IEG of statistics A (with
no mutual statistics between different momenta), if
g(k, k') = A6(k —k'), or p, (k) + 2tp(k) = p (k) [4],
where pp(k) = I/2n is the bare density of single-particle
states. Thus A = 1 corresponds to fermions, and A = 0
to bosons. The thermodynamics of IEG is shown [2] to
be determined by the thermodynamic potential
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constrained [9] by M = J (mod 2).] Therefore the total
change in energy and in momentum, due to charge and
current excitations, are

6Ep = 2 2 Ml
2

(vNM + vJJ ), 6Pp = qr dp+ I. )
(4)

respectively, with

VN = V&A, VJ = Vz/A, Vx = QVNVJ .

e (k) = ~VF(k ~ kF) + kF, lkl ~ kF,
+.vF(k ~ kF)/A + kF, lkl ( kF

We note the "refractions" at k = ~kF. In spite of this
peculiarity, we have succeeded in bosonizing the effective
Hamiltonian as follows. The density fluctuation operator
at k —kF is constructed as follows:

These coincide with the well-known relations [9] in
Luttinger-liquid theory, if we identify A with Haldane s
controlling parameter exp( —2p). So it is interesting to
see whether all critical exponents of Luttinger liquids are
also reproduced simply by IEG.

To calculate the exponents in IEG, we need to develop
a bosonization approach. Following Yang and Yang
[3,13], we introduce the dressed energy e(k, T) by writing

(k T) [e(k,T) P]/T— . (6)

The point is that the grand partition function Z~, corre-
sponding to the thermodynamic potential (2), is of the
form of that for an ideal system of fermions with a
complicated, T-dependent energy dispersion given by the
dressed energy: ZG = Pk(1 + e~i" '(" ~l ). However,
this fermion representation is not very useful, because of
the implicit T dependence of the dressed energy. We ob-
serve, nevertheless, that in the low-T limit the T depen-
dence of e(k, T) can be ignored: According to Eqs. (3)
and (6), e(k, T) = e(k) + O(e 't ), where

(k' —kF')/~ + k,',
k2

Thus the low-T grand partition function can be ob-
tained from the effective Hamiltonian given by H, ff

gz e(k) ct cg, where cz are fermionic creation operators.t
Another simplification in the low-T limit is that we

need to consider only low-energy excitations near Fermi
points k —~kF, where the left- and right-moving sectors
are separable and decoupled: H, gg

= H+ + H, and H
has a linearized energy dispersion

state expectation value, we obtain

[p,(=', p,(="]= q&, ,, [H=, p,'='] = = .qp, ,2~
(1o)

which describe 1D free phonons with the sound velocity
v, = vF. Introducing normalized boson annihilation op-

(+) (—)terators bq = $27r/AqL pq, bq = $2qr/AqL pq, the
bosonized Hamiltonian satisfying (10) is given by

7T
H =v, Pq(btb +btb)+ ——

q q q
q&p

x AM + —J2 1 2

The construction of the bosonized momentum operator
is a bit more tricky. Each term in Eq. (9) should carry
same momentum q, therefore the fermion created by ck
carries a dressed momentum p, which is related to k by

k —kF + (kF/A), k ~ kF,
p(k) = ~ k/A,.k + kF —(kF/A), k & —kF.

In terms of this variable, the linearized dressed energy
e(p) is of a simple form: e~(p) = ~v, (p ~ pF) + p, ,

with pF = kF/A. The bosonized total momentum opera-

tor, corresponding to the fermionized P = gt, p(k) cz cz,
1s

P = g q(b bq
—b bq) + 7r(dp + M/L) J . (13)

q~p

In the coordinate-space formulation, the normalized
density field p(x) is given by p(x) = pR(x) + pz(x):

M
pR(x) = + g q/2qrLA(e'q bq + e 'q bt),

q&0

(14)
and pz(x) is similarly constructed from bq and bt. The
boson field P(x), which is conjugated to p(x) and satisfies
[@(x),p(x')] = i6(x —x'), is P(x) = @R(x) + Pz(x)
with

QR(x) = + + i P 7rA/2qL
Pp qr Jx
2 2I.

(eiqxb e
—iqxbt)

and a similar Pz(x). Here M and J are operators
with integer eigenvalues, and Pp is an angular variable
conjugated to M: [@p,M] = i The Ha. miltonian (11)
becomes

(+)P — ~ . ck+qck . + ~ . ck+Pqck
k~kF k&kF —Aq

C(k k )t/g+k +qCk (9)

dx/II(x) + [a,X(x)] ),

where II(x) = qrA' p(x) and X(x) = A 't P(x). With
X(x, t) = e' 'X(x)e ' ', the Lagrangian density reads

kF —Aq&k&kF 5 = (v, /2qr) 8 X(x, t) 6 X(x, t). (16)
(—)for q ) 0. A similar density operator pq can also be de-

fined for k ——kF. Within the Tomonaga approximation
[14], in which commutators are taken to be their ground

We recognize that 5 is the Lagrangian of a c = 1 CFT
[11]. Since @p is an angular variable, there is a hidden
invariance in the theory under P ~ P + 2'. The field
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X is thus said to be "compactified77 on a circle, with a
radius that is determined by the exclusion statistics:

X —X+2~R, R =1/A. (17)
States V[X]!0)or operators V[X] are allowed only if they
respect this invariance, so quantum numbers of quasipar-
ticles are strongly constrained. The particle-hole duality

[4,5], i.e. , A ~ 1/A and M ~ J, in Eq. (11) is just a dual-

ity R ~ 1/R. Moreover, the partition function of IEG (in
R L

the low Tlim-it) can be rewritten as Z = Tr~[q 'q "],
where q = O' ' . The zeroth generators of the Virasoro

algebra are Lp' = v, 'HR L + (~/4L) [JR ~ M/R] .
The constraint M = J (mod2) makes our variant of c = 1

CFT have an unusual spectrum and duality relation [II].
We also see that the Hamiltonian (15) agrees with

Haldane's harmonic fiuid description of Luttinger liquids
[15]. Thus the critical properties of IEG reproduce those
of Luttinger liquids. Or one may say that IEG can be used
to characterize the fixed points of Luttinger liquids.

Using bosonization techniques, the computation of
correlation functions and critical exponents in IEG is

similar to that for Luttinger liquids [9,15]. A careful
construction for the allowed boson field with charge 1

leads to

qf f p tx ( )1/2 P lo,p . i(A'~' +2m/ X'~') X~(x )
PyX7 t) —P X

i(A' —2m//A' )Xi (x &)
~ 7 (18)

p(x) = +x(x)+x(x) = +a(x)+a(x)t

= p(x) P: exp(i2m[X~(x) —Xt.(x)]/A ): . (19)

where the Hermitian, constant-valued operators 0 sat-
isfy [O, O ] = i~(m —m') [16]. The excluson op-
erator reads %'X(x) =: 'Pii(x)e' ~ ' ' ' ~, obeying

Wx(x)+x(x') —e' 's"~' ")'Itx(x')'Ifx(x) = 0 for x 4
x'. The multisector density operator for exclusons is

1 ( 1 1 1
(p(x, t)p(0, 0)) = dp 1 + —

2 ! 2 + + g A,
/

cos(27rdpmx)
2'trdp A (x+ x i x+x

G(x, t; A) =— (0'x(x, t)'Pq(0, 0)) = dp 8 e'~
m= —~ X X+

with A and B regularization-dependent constants.
These correlation functions coincide with the asymptotic
ones [6] in the Calogero-Sutherland model.

The single-hole state, i.e., alt)/x!0) =— Wz(A 1/A)!0),t

with charge —1/A alone is not allowed. The minimum al-

lowed multihole state is given by %')/x(xi) . . 'P, /X(x„)!0)t t

if A = p/q is rational. One may obtain, e.g. ,

([+ / (, t)]"[+ / (o, 0)]"& —[G( t;I/A)]'. (2o)

A more interesting allowed operator is what creates q
particle excitations accompanied by p hole excitations:

n(x, t) = [0 x (x, t)]~[%'i/x(x, t)]". We note the similar-t t

ity of this operator to Read's order parameter [17] for
fractional quantum Hall fluids (in bulk). Its correlation
function can be calculated by using Wick's theorem:

(n(x, t)n(0, 0)) —[G(x, t; A)]~[G(x, t; I/A)]F. (21)

If the contribution from the I = 0 sector dominates, then
one gets (n(x, t)n(0, 0)) —(x —v, t)

Now we turn to discussing the effects of mutual statis-
tics. Consider a GIG with the statistical matrix (1) given

by g(k —k') = B(k —k') + iI~(k —k'). Here ~I~(k) =
iIi( —k) is a smooth function and stands for mutual statis-
tics between particles with different momenta, in contrast
to IEG, for which 4(k) is a B function. The thermody-
namic properties of GIG is also given by Eq. (2), but now

w(k, T) satisfies instead an integral equation [2,4] which,
in terms of the dressed energy (6), is of the form

e(k, T) = ep(k) + T
dk'

4& (k —k')
27T

X ln(1 + '""'/')
where ep(k) = k2, and we have shifted the dressed energy
by chemical potential p, . At T = 0, the Fermi momentum

kF is determined by e(~kF) = 0. Introduce
F dk

(n p) [—kF, kF] —= n(k) P(k), (22)
kF 27T' dl'

(rIin) (k; kF, kF] = — Ci(k —k') n(k') . (23)
—kF 27T

Then both p(k) and e(k) in the ground state satisfy an

integral equation like

n(k) = np(k) —(iIin) (k; kF, kF]. (2—4)

The dressed momentum p(k) is related to p (k) by p'(k) =
2~p(k) and p(k) = p( k). The gr—ound—state energy
is given by Ep/L = (epp) [—kF, kF] = (epp) [—kF, kF].
These equations are of the same form as those in the
thermodynamic Bethe ansatz [3], hence the Luttinger-
liquid relation v, = /vs vJ remains true [18]:The charge
velocity is v~ =~v, z(kF), where the dressed charge
z(k) is given [18] by the solution to the integral equa-
tion z(k) = 1 —(iIiz) (k; —kF, kF]. This relation can be
easily derived from the definitions v~ = LBp, /BNp and

z(k) = —Be(k)/Bp, . To create a persistent current, let
us boost the Fermi sea by ~kF ~kp + 5, where 5 =
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z(kF)/Lp(kF). Then the total energy of the state with the
persistent current is

Ets/L = (capo) [—kF + A, kF + 5], (25)

where et'(k) = Eo(k) (4'eg) (k; kF + 5, kF + 5].
Thus, Z, —Zo = L/t. 'e'(k, )p(k, ) = (2~/L)v, z(kF)'.
This verifies vJ = v, z(kF) . In view of Eq. (5), at low
energies GIG looks like IEG with

jeff = Z(kF) (26)

It can be shown that it is the effective statistics (26)
that controls the low-T critical properties of GIG, as
A does for IEG. Linearization near the Fermi points
and bosonization of the low-energy effective Hamilton-
ian go the same way as before for IEG. The only dif-
ference now is that the linearized dispersion for dressed
energy e (k) = +e'(kt;)(k + kF) + p, = +v, [p(k) +
pt;] + p, is smooth at k —~kF. So bosonization is
standard and the bosonized Hamiltonian is the same as
Eq. (11) for IEG, only with A replaced by A,tt. An (al-
lowed) 'Itq „describes the particle excitations near the
Fermi surface with both anyon and exlcusion statistics be-
ing A, z&. In this sense, one may say that the effect of
mutual statistics is to renormalize the statistics.

Here we remark that in IEG 4(k, k') = (A —1) 6(k-
k') is not smooth, so the dressed charge has a jump at kF ..
z(kF) = 1 and z(kF) = A ' for kF = kF ~ 0+. The
general Luttinger-liquid relation is of the form=,[z(k, )z(k„-)]-', , =,z(k, )z(k;). (27)

Finally, we examine nonideal gases, e.g. , with general
Luttinger-type density-density interactions

Ht = —Pl:U (P P,' + P,P,')q

+ V~(p~p~ + pqp~)] ~ (28)

which is added to the Hamiltonian describing a GIG. Af-
ter bosonization, the total Hamiltonian remains bilinear
in densities, so it is trivial to diagonalize it using the
Bogoliubov transformation. The diagonalized Hamilton-
ian is again of the harmonic-Iluid form (11) with b~ and

bq replaced by corresponding operators for Bogoliubov
quasiparticles, and with the velocities renormalized: v,
vs = l(vs + Uo) I'ol ~ vw
v 1 ~ v 1 v, e ~o. Thus the Luttinger-liquid relation (5)
survives, with A, ~~ of GIG renormalized to

v 1 —v~ —2VO
ff e +', tanh(2@o) = . (29)vj+ v~+2UO

Note that the new fixed point depends both on the position
of the Fermi points and on the interaction parameters Uo
and Vo, leading to "nonuniversal" exponents.

In passing we observe several additional implications of
this work: (1) Our bosonization and operator derivation
of CFT at low energies or in low-T limit can be applied
to Bethe ansatz solvable models, including the long-
range (e.g., Calogero-Sutherland) one. (2) Here we have
only considered one-species cases, i.e., with excitations

having no internal quantum numbers such as spin. Our
bosonization and characterization of Luttinger liquids are
generalizable to GIG with multispecies, presumably with
the effective statistics matrix related to the dressed charge
matrix. (3) The chiral current algebra in Eq. (10) with
A = 1/m coincides with that derived by Wen [19J for
edge states in v = 1/m (m odd) fractional quantum Hall
fluids. So these edge states and their chiral Luttinger-
liquid fixed points can be described in terms of chiral IEG.

In conclusion, we have shown that 1D IEG without
mutual statistics can exactly reproduce the low-energy
and low Tpro-perties of (one-component) Luttinger liq-
uids. Moreover, mutual statistics and Luttinger-type in-
teractions in a GIG only shift the value of A,ff. Thus
the essence of Luttinger liquids is to have an IEG obey-
ing FES as their fixed point. It is conceivable that some
strongly correlated systems, exhibiting non-Fermi-liquid
behavior, in two or higher dimensions can also be charac-
terized as having a GIG with appropriate statistics matrix
as their low-energy or low-temperature fixed point.
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