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Diffuse Scattering and Phason Elasticity in the A1PdMn Icosahedral Phase
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The diffuse scattering located close to Bragg rejections has been measured on a single grain of the
A1PdMn icosahedral phase using elastic neutron scattering. This diffuse scattering is mainly due to
phason disorder. The intensity distribution and anisotropic shape can be reproduced in the framework
of the elastic theory of quasicrystals using only the two phason elastic constants whose ratio is found to
be equal to —0.5.

PACS numbers: 61.44.+p, 61.10.Lx

The atomic structure and physical properties of qua-
sicrystals have been the focus of many experiments since
the discovery of the "perfect" quasicrystal in the A1CuFe
[1]and AlPdMn [2] systems. These quasicrystals are char-
acterized by well defined long-range quasiperiodic order
with resolution-limited Bragg peaks [3—5], similar to what
is obtained with the best metallic alloys. The quality of
these grains is such that dynamical diffraction can take
place on a macroscopic scale [6]. Although the A1PdMn
icosahedral phase presents very good long-range quasiperi-
odic order, it was shown recently that some diffuse scat-
tering is located close to the Bragg rellections [7].

Structural descriptions of icosahedral alloys are most
conveniently done in a higher dimensional space where
the structure is periodic. Here, the atomic structure of
icosahedral phases is described by a six-dimensional cubic
lattice that may be decomposed into two subspaces: E~~~,

the physical space, and E+, the complementary or per-
pendicular space (see Ref. [8] for an introduction). The
six-dimensional lattice is decorated by three-dimensional
objects, called atomic surfaces, lying in the perpendicular
space.

Previously, we [7] found that the integrated intensity of
the diffuse scattering was scaled as 1[1 —exp( —Bi Q~)],
where I is the Bragg peak intensity, Qi the perpendicular
component of the reciprocal vector, and B~ a perpendic-
ular Debye-Wailer factor. This is what is expected
from bounded fluctuations of the atomic surfaces in
the perpendicular direction. The rms fluctuations of the
atomic surfaces were found to be about 2 A, which has
to be compared to 20 A, the average diameter of atomic
surfaces. Such fluctuations in the perpendicular direction
lead to a distribution of "phason" defects. A study of the
shape of the diffuse scattering will give information about
the spatial distribution of the phason defects.

We report, in this paper, measurements of the intensity
distribution and shape anisotropy of the diffuse scattering
located close to the Bragg rejections. As described

in detail below, most of the diffuse scattering is due
to phason disorder and can be interpreted within the
framework of the hydrodynamic theory of quasicrystals.

Phason degrees of freedom arise as a consequence of
the noncrystallographic symmetry of quasicrystals [9].
In the simplest case, a phason defect corresponds to an
atomic jump from one position to another one nearby hav-
ing a similar local environment. Such atomic jumps have
been observed in icosahedral A1CuFe above 600 'C [10].
A distribution of phason strain leads to a broadening of
Bragg rellections [9,11]. Bounded random fluctuations
of the atomic surfaces in the perpendicular subspace do
not destroy the long-range order, i.e., there are still Bragg
peaks, with a reduced intensity, and some diffuse scatter-
ing shows up. This is the case for random tiling models
in which phason fluctuations lead to a configurational en-
tropy [12,13]. It is conjectured that in a random-tiling-like
phase the entropy density varies quadratically as a func-
tion of the phason strain [12,13]. This was demonstrated
in the case of the square and triangle tilings [14] and
checked numerically on two-dimensional [15] and three-
dimensional [16] models. Even if a quasicrystal is en-
ergetically stabilized representing a ground state, it was
shown numerically that above some critical temperature
the system is in a random-tiling-like phase or unlocked
phase [17]. Because of the squared gradient dependence
of the entropy, the elasticity theory of quasicrystals can be
formulated in the long wavelength or hydrodynamic limit
[9,18]. For icosahedral quasicrystals, the elastic free en-

ergy may be written as the sum of three terms: a phonon
term depending on the phonon strain tensor, a phason term
depending on the phason strain tensor, and a coupling
term which couples phonon and phason distortion. Group
theoretical arguments show that the free energy depends
on five independent elastic constants as F = F~h„(A +
p) + F~h, ,(K~, K2) + F«„z(Ks), where A and IL are the
Lame coefficients, K~ and K2 the phason elastic constants,
and K3 the phonon-phason coupling term [9,13]. In such
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a framework the diffuse scattering due to phonon or pha-
son disorder can be computed [19].

In the present experiment we used a 2 cm single grain
grown by the Czochralski method [20]. It had an overall
mosaicity smaller than 0.05 and a chemical composition
given by A16~ ~Pdzz pMn9. Measurements were carried
out on the 4F2 triple axis located on the cold source of
the Orphee reactor (Laboratoire Leon Brillouin, Saclay).
All scans were done with an incident wave vector equal
to 1.64 A ' and a double graphite filter to suppress higher
harmonics. In this configuration, the energy resolution is
0.055 THz, and the resolution in reciprocal space is on
the order of 0.01 A ' with an almost circular shape in the
diffracting plane. The high energy resolution allowed the
separation of the usual thermal diffuse scattering due to
phonons, from the elastic diffuse scattering. Tests carried
out by masking part of the sample showed that the diffuse
scattering arises from all the sample.

One of the main difficulties in studying the diffuse
scattering located near strong Bragg reflections is the
large intensity difference that is encountered between the
Bragg peak and diffuse scattering (their ratio is of the
order of 104). A precise knowledge of the instrumental
resolution is thus necessary if one desires to disentangle
the Bragg peak contribution from the diffuse scatter-
ing. Various tests on perfect crystals and on different
reflections of the quasicrystal showed that the resolution
function is Gaussian with the contribution from the Bragg
peak becoming negligible for a distance q ) 0.04 A.

from the Bragg point. Moreover, for this wave vec-
tor, all phonons are excluded from the elastic energy
window. The diffuse scattering has been measured at
room temperature, around various points in a twofold
scattering plane (Fig. 1). Results are presented for
q values larger than 0.04 A.

Within the framework of the hydrodynamic theory,
Jaric and Nelson [19] describe a way of computing the
diffuse scattering due to thermalized or quenched-in pha-
son (and phonon) disorder. In the present measurement at
room temperature, phason disorder is likely to be frozen
in. However, they showed [19] that the diffuse scatter-
ing may be computed in a manner similar to what is done
for equilibrium phason disorder. Let us consider that only
phason disorder contributes to the diffuse scattering (i.e. ,

K3 = 0 and there is no contribution from elastic phonon
distortions). If Q is a reciprocal lattice vector, with com-
ponents Q~~ and Q~ in parallel and perpendicular space,
the diffuse scattering intensity measured at a position q
away from this Bragg peak can be derived from the elas-
ticity theory as [19]

I(QII + q) = Q~C Q~IB„«, (1)
where I~„z@ is the Bragg peak intensity and C is the
phason part of the hydrodynamic matrix which depends
on q and the two phason elastic constants K& and
Kq. From this relation one can deduce the following
characteristics for the diffuse scattering: (i) along a
given direction q it decays as 1/q; (ii) for Bragg
reflections along the same direction in reciprocal space
the diffuse scattering scales as IB„,ssg~, and (iii) the
overall icosahedral symmetry of the diffraction pattern is
preserved.

Figure 2 shows transverse scans taken around the
fivefold reflections A and B (Fig. 1) with Q~ values equal
to 0.7 and 0.17 A, respectively. The solid line is a fit
of the 1/q decay to the data. For the B reflection, where
there is a large diffuse scattering intensity, measurements
are reported from 0.04 to 0.6 A ', corresponding to
more than 2 orders of magnitude in intensity. This 1/q
decay has been found for all measured reflections and
for any direction in reciprocal space. In the same figure
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FIG. 1. Twofold scattering plane of the i-AlPdMn phase. The
area of the spot is proportional to the intensity of the reflection.
The diffuse scattering has been measured, in this plane, around
the labeled reflections. AS and A3 denote fivefold and threefold
symmetry axes.

FIG. 2. Transverse elastic scans taken around the reflections
A (open circle) and 8 (full circle), lying along a fivefold axis.
The solid line is the 1/q~ decay. The diffuse scattering of
reflection A has been renormalized as described in the text.
Note the logarithmic scale for intensity.
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the de diffuse scattering measured around the A reflection
has been renormalized to the data for the B reflection
in order to account for the I ~~ d dependence. As
can be seen in Fi . 2b 'g. 2, both curves superimpose quite
well, demonstrating the Qz dependence of the diffuse
scattering. Similar rescaling for reflections along the
twofold axis gave a rather good agreement.

Figures 3(a)—3(d) shows isointensity contours of the
di use scattering measured around the Br 0e ragg re ections

, C, D, an F in a twofold scattering plane He. orizon-
a an vertical axes Q, and QY are parallel to a twofold

axis. In the fouour panels, contours are in the range 0 to
1000 counts alllowing a direct quantitative comparison of~ ~

the diffuse scattering intensity. Note that the diffuse scat-
tering at each reciprocal lattice point has a very different

and d
shape, demonstrating that it is indeed due t th 1

an oes not arise from instrumental resolution or mosaic
effects. It might seem surprising that the diffuse scatter-
ing around rejections B and C [Figs. 3(a) and 3(b)] have
such a different anisotropy. Indeed these rejections have
almost the same vector Q~~ (Fig. 1). However, their per-
pendicular components are almost orthogonal, refIection B

aving perpendicular space coordinates of (0.14, —0.085),
while refiection C has coordinates (—0.45, —0.45). This
is, once again, a clear demonstration that the diffuse scat-
tering is related to phason disorder. N t l h

erence in diffuse scattering intensity between rejec-
tions C and D [Figs. 3(b) and 3(c)] although these refiec-
tions have the same Bragg peak intensity. This is because

reflection C has a Q~ value about 3 times that of reflec-
tion D. Finally, Fig. 3(d) presents the diffuse scattering
around the twofold reflection E. In the icosahedral phase
there is a mirror plane along the Q = 0 direction. A
can be seen, the diffuse scatterin b ho eys t is symmetry
element as expected from theory.

It should be possible to reproduce the anisotropic shape
of the diffuse scattering using relation (1). The only

~ o two phasonadjustable parameter is the ratio K /K f h
e astic constants. Figures 3(e)—3(h) show the diffuse
scattering shapes predicted by the model when the ratio
Kz/Ki is equal to —0.52. The agreement bet h
model an t

eween t e
mo e and the experiment is surprisingly good. The
comparison can be made more quantitative for scans
along a given direction by fitting the 1/q decay. The
overall agreement is satisfactory [21] and can be seen,
for instance, by looking at Figs. 3(b), 3(c), 3(f), and 3 g .
The strong iminution of diffuse scatterin wh
rom reAection C to D is well reproduced. To go further

in the analysis would certainly require the introduction
o phonon elastic distortions and of the phason-phonon
coupling term.

~ ~

It is interesting to compare the experimental ratio of the

p ason elastic constant with the onset of hydrodynamic
instability calculated by Ishii [22] and W d 23
a so [ ]). When the ratio K2/Ki is equal to —0.75 the
matrix inverse in expression (1) diverges, leading to a
vanishing of the Bragg refIection Wh
this instability point, the computed diffuse scattering
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FIG. 3. Comparison of the diffuse scatterin m
hason elastic
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shows strong streaks along the threefold axes [22,23].
Note that recently a modulated icosahedral phase was
discovered for an alloy composition very close to that of
the quasicrystal [24]. Around each Bragg reliection of the
icosahedral lattice, there is a star of satellite rejections
lying along the threefold axis, precisely what is expected
from the stability argument. This indicates either a
strong dependence of the ratio K2/Kt with the chemical
composition, similarly to what has been conjectured in
the A1CuFe system [4,13], or the occurrence of a first
order transition. In the first case, one would have a
"softening" of the phason elastic constants when going
towards the chemical composition of the modulated phase.
Lowering the temperature would lead to a transition from
an icosahedral phase to a threefold modulated phase.
For the present sample, the temperature transition would
be too low for the transition to be achieved kinetically
(say, for instance, T, =500'C.). The observed phason
disorder, at room temperature, would thus result from a
freezing of pretransitional phason fiuctuations.

Another possibility is the case where the quasicrystal
is energetically stabilized. At sufficiently high tempera-
ture the quasicrystal is in a random-tiling-like phase. In
the low temperature region, the free energy is no longer
quadratic in the phason variable [13],and the diffuse scat-
tering has not yet been computed. Our results would sug-
gest that we are still in a random-tiling-like phase at room
temperature, which might seem surprising; nevertheless,
both scenarios predict a very different temperature depen-
dence for the diffuse scattering. Such experimental stud-
ies are in progress.

In conclusion, we have studied the diffuse scattering
located close to the Bragg reflections in a perfect icosa-
hedral A1PdMn phase. Its anisotropic shape and intensity
dependence are reproduced by considering only the two
phason elastic constants K2 and K& whose ratio is equal to
—0.5. The present results are in agreement with squared
gradient behavior of the free energy as a function of the
phason strain, as proposed in the random tiling picture of
quasicrystals. The phason disorder corresponds to the su-
perposition of long wavelength Iluctuations (between 10
and 150 A) in the sample, leading to correlated phason
jumps. This is of importance for the understanding of the
formation of quasicrystal and modeling of their atomic
structure.

We gratefully acknowledge useful discussion with C. L.
Henley, V. Elser, M. Widom, and M. Oxborrow.
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