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Periodic Spinodal Decomposition in a Binary Polymeric Fluid Mixture
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We demonstrate here a dynamic phase transition between a periodic state without coarsening and a
nonstationary state with coarsening, for a binary polymer mixture periodically driven above and below
its instability point. For a nonstationary state we have found, in both symmetric and off-symmetric
mixtures, the growth of a two-level structure characterized by two length scales. There is no self-
similarity in this pattern evolution. A dynamic phase diagram of the dynamic stability of the phase
has been obtained for the first time: Hydrodynamic interaction is found to have a strong effect on the
dynamic stability limit through its dependence on the composition symmetry.

PACS numbers: 64.75.+g, 05.70.Fh, 64.60.Ht, 64.70.Ja

It is well known that phase separation proceeds in an
unstable state of a mixture and the system eventually sepa-
rates into two macroscopic phases. This process of the
decay of an unstable state has been intensively studied
by many researchers for various kinds of condensed mat-
ter, and the universal feature of the phenomenon has been
clarified [1]. Phase separation is initiated by the temporal
change of a control parameter such as temperature, which
brings a system from a stable to an unstable state [1]. Tem-
perature quenches into an unstable state can be classified
into three types: (i) a single temperature quench which has
been most commonly used for studying phase separation
[1], (ii) a multiple temperature quench including a slow
continuous quench and a double temperature quench [2—
4], and (iii) a periodic temperature quench [5—9]. The last
one was first studied theoretically by Onuki to answer what
happens when a mixture is periodically brought above and
below the critical temperature. Onuki predicted that there
exists a new type of dynamic phase transition between a
periodic and a nonperiodic state. Then this problem was
experimentally investigated by Joshua et al. [8] for binary
Auid mixtures experiencing a periodic pressure change.
These pioneering works revealed the physics of periodic
spinodal decomposition using early-stage phase separation.
However, dynamic competition between phase mixing and
late-stage phase separation has so far been explored nei-
ther theoretically nor experimentally. This competition is
particularly interesting, since hydrodynamics plays a domi-
nant role only in the late-stage coarsening.

In this Letter, we are aiming at answering the following
questions. (i) How does the periodic phase separation
proceed with time? (ii) What determines the dynamic
stability limit? (iii) What is the general feature of the
dynamic phase transition caused by dynamic competition
between an ordering and a disordering process?

The samples used were mixtures of oligomers of e-
caprolactone (OCL) and styrene (OS). The number av-
eraged molecular weights of OCL and OS were 2000
and 1000, respectively. Polydispersity ratios of OCL and
OS were 1.2 and 1.04, respectively. The critical com-
position of this mixture was OCL/OS(33/67), and the

critical temperature T, was 135.5 C. The experiments
were performed at compositions where phase separation
is not affected by wetting. For a simple liquid mixture,
it is rather difficult to use a temperature oscillation to in-
duce periodic phase separation because of its fast phase-
separation speed and a pressure oscillation has been used
[8]. For a polymer mixture, however, we can use an
isothermal temperature oscillation because of the intrin-
sically slow molecular dynamics. This is a merit of us-
ing a polymer mixture for studying periodic phase separa-
tion, since we can avoid the problem stemming from the
difference between adiabatic and isothermal phase sepa-
rations [10]. The temperature of the hot stage (Linkam
TH-600RMS) was controlled by a computer to have the
functional form of T(t) = T + AT sin(2~t/r„). For this
periodic temperature oscillation, each period can be di-
vided into two parts: (i) a mixing interval in the one-
phase region [T(t) ) Tb, , Tb„ is the binodal tempera-
ture] and (ii) a demixing interval in the two-phase region
[T(t) ( Tb„] The latter is .further composed of two parts,
namely, a deeper-quench demixing period [BT(t)/d t ( 0]
and a shallower-quench demixing period [ctT(t)/ct t ) 0].
There are a number of key variables in periodic phase sepa-
ration such as the composition @,T, AT, r„,and the func-
tional shape of the temperature change. Here r„(10or 20
s) and AT (1 or 2 K) were fixed, and @ and T were used
as variables.

A mixture slowly phase separates with oscillatory be-
havior only when the system is cool enough to phase sepa-
rate. First we show such examples. Figure l(a) shows
the coarsening dynamics of periodic spinodal decompo-
sition for a symmetric mixture in a nonsteady coarsen-
ing regime. We can clearly see the two-level structure
composed of an elementary bicontinuous structure and a
large, growing superstructure in the late stage. The two-
level structure refiects the existence of only two types of
domains: One type of domain survives after experiencing
the mixing period and continuously grows, while the other
type of domain is created and destroyed within each period
and thus does not grow with time. Figure 1(b) shows simi-
lar coarsening dynamics for an off-symmetric mixture. In
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FIG. 2. Temporal change of S(q) in OCL/OS (38.5/61. 5), for
T = 135.2 C, AT = 2 K, and ~~ = 20 s.

FIG. 1. Coarsening processes of periodic spinodal decomposi-
tion for T ( T* (a) Bicontin. uous patterns observed in the nth
period at the phase of 9 s for OCL/OS (35/65). T = 135.8 C,
AT = 2 K, and 7~ = 10 s. The pattern was two-valued by
a black and white operation. (b) Droplet patterns observed in
the nth period at the phase of 15 s for OCL/OS (38.5/61.5).
T = 135.2 C, AT = 2 K, and ~„=20 s.

contrast to Fig. 1(a), there is a long incubation time before
large droplets are formed and the two-level droplet struc-
ture becomes evident. Figure 2 shows the temporal change
in the structure factor S(q) (q is the wave number) for an
off-symmetric mixture. S(q) was obtained by numerically
calculating the power spectrum of the 2D Fourier trans-
formation of a digitized image (400 X 400, 8 bit) [11].
Then we get S(q) by averaging S(q) circularly. The two
peaks of S(q) correspond to the elementary-droplet struc-
ture and the large superdroplet structure. This double peak
is similar to that predicted for periodic spinodal decompo-
sition of solid mixtures by Onuki [5]. We can clearly see
the oscillatory behavior of these peaks reflecting the peri-
odic temperature change and, at the same time, the gradual
growth of the lower-wave-number peak corresponding to
the large superdroplet structure. Figure 3 shows the over-
all coarsening behavior of the two peaks of the structure
factor S(q) corresponding to the elementary-domain and
the superdomain structures (see Fig. 1), for both symmet-
ric and off-symmetric compositions. We made a fitting of
two Gaussian functions to S(q) and obtained the two peak
wave numbers. For bicontinuous phase separation, there
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FIG. 3. Time dependencies of the two characteristic peak
wave numbers q~ for T ( T*. Circles correspond to the
experiment of Fig. 1(a), while squares to that of Fig. 1(b).
Filled symbols are for the elementary small domains, while
open symbols are for the superdomains. The solid lines have a
slope of 1/3 or 0.
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is no incubation time and the superstructure coarsens with
a time exponent of —1/3. For droplet phase separation,
on the other hand, there is a long incubation time before
the rapid coarsening of the superstructure. The behavior is
quite consistent with what is shown in Fig. 1. The appear-
ance of the two-level structure whose component structures
coarsen differently indicates strongly that there is no self-
similarity in pattern evolution for a nonsteady growth state
(see Fig. 3), in contrast to the results reported by Joshua
et al. [8]. This inconsistency likely rellects the difference
between periodic phase separation using early-stage spin-
odal decomposition and that using the late-stage one.

Figure 4 indicates the temporal change in the intensities
[S(q„)]and wave numbers (q„)of the peaks of S(q).
For the symmetric mixture [see Fig. 4(a)], there is a
clear difference in the dynamics between a mixing and a
demixing period and thus q„oscillates in a saw-tooth-like
shape. For the off-symmetric mixture [see Fig. 4(b)], on
the other hand, there is not such a drastic difference and
thus qp oscillates in a sinusoidal shape. This oscillation
amplitude becomes smaller with time, rejecting that the
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superdroplets become much larger than the characteristic
diffusion length of a mixing period.

For T ~ T*, we have only small droplets which pe-
riodically appear below Tb„and disappear above Tb„
and thus the system is in a periodic steady state without
coarsening. For T ( T", on the other hand, we have a
nonsteady state which accompanies the coarsening of a
phase-separated pattern from period to period, as in-
dicated in Figs. 1 —4. Thus there is a dynamic phase
transition at T* between a periodic steady state and a
nonsteady growth state, as predicted by Onuki [5]. We
have also found that T* is strongly dependent on @. The

P dependence of T*, T*(P), which has been experimen-
tally obtained for r„=10 s and AT = 2 K, is shown
in Fig. 5 together with the thermodynamic phase dia-
gram. The most striking feature is that T' ) Tb„for bi-
continuous phase separation, while T* ~ TI, „

for droplet
phase separation. This fact was unambiguously con-
firmed by checking whether the system finally becomes
homogeneous or inhomogeneous after changing the tem-
perature pattern from T(t) = T* + AT is(n2~t/ r) to
T(t) = T*. This T"(@)curve should be called a dynamic
phase diagram, since its location is determined mainly by
dynamic factors such as phase-mixing dynamics in a mix-
ing period and coarsening dynamics in a demixing period.

First, we discuss the elementary process of periodic
spinodal composition in each period. During a mixing
period in the one-phase region, a domain becomes diffuse
and disappears by simple interdiffusion through the

domain boundary. The characteristic diffusion length
ld during a mixing period (r;,) can be estimated as
ld —Dr;„,where D is the diffusion constant and
D = kIiT/57rT1$ (s is the correlation length). Thus it
takes —R2/D for the memory of a domain structure with a
characteristic size of R to be completely lost. In a dernix-
ing period in the two-phase region, we can assume that a
domain coarsens by the well-known scaling law of normal
spinodal decomposition [1]: For a symmetric mixture
R = kb(rr/rI)t [1,12], where kb is the constant, o. is the
interface tension, and g is the viscosity. This fast hydro-
dynamic coarsening driven by capillary instabi1ity is well
known as Siggia s mechanism. For an off-symmetric mix-
ture, on the other hand, R = [(kdkiiT/57rri)t]'i Here. ,

kd —12Cid (rIid is the volume fraction of droplets) for the
Brownian-coagulation mechanism, while kd —0.053 for
the evaporation-condensation mechanism [1,12]. On the
basis of this simple model, we can estimate T"' according
to the following criterion. When a domain size R after ex-
periencing the coarsening in a demixing period is smaller
than ld, periodic spinodal decomposition should be in
a periodic steady state. Otherwise, it is in a nonsteady
state with coarsening. T' can be most easily estimated
for a stepwise periodic temperature change: In this case,
o(T" —AT-) —tkiiT/[57r Tlg(T* + ET)rp])'i~(rj/kb)
for the bicontinuous case, while g(T' + AT)
(124d ) (kri T /5 7r ri) 7

„

for the droplet case. Here
o ~ e ' and g ~ e ', where e = (T —T,)/T, and v
is the critical exponent of $ (v —0.63). This model
explains the @ dependence of T" at least qualitatively.

The fact that T' ~ Tb„for bicontinuous phase separa-
tion and T* ( Tb„for droplet phase separation can be ex-
plained physically as follows. For a symmetric composi-
tion, the hydrodynamic coarsening unique to bicontinuous
spinodal decomposition causes a strong asymmetry in be-
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FIG. 4. (a) Temporal change in the intensity ( ~ ) and the wave
number (&&) of the peak having the temperature oscillation for
the experiment of Fig. 1(a). (b) Temporal change in the wave
numbers of the two peaks reflecting the two-level structure
for the experiment of Fig. 1(b). o is the lower-wave-number
peak and ~ is the higher-wave-number peak. For both (a) and
(b) the dashed sinusoidal curves indicate the temperature
oscillation behavior.

FIG. 5. The dynamic phase diagram [T"(P)] of the OCL/OS
mixture together with the thermodynamic phase diagram [filled
circle is the binodal line (solid curve), open circle is the
spinodal line (black dashed curve)]. @ is the weight fraction
of OCL. T*(@)(open square with the gray dashed line) is the
boundary mean temperature between a periodic steady state and
a nonperiodic coarsening state for the temperature oscillation
of r„=10 s and 5T = 2 K (gray arrows) PSD stan. ds for
periodic spinodal decomposition.
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havior between a mixing and demixing period: In a mix-
ing period, domains dissolve by slow diffusion, while in
a demixing period domains grow by quick hydrodynamic
coarsening as R —t [see Fig. 4(a)]. Thus only a short
demixing period can create a domain which is too large to
be destroyed in a mixing period. For off-symmetric mix-
tures, on the other hand, both phase separation and phase
dissolution are dominated mainly by diffusion. Thus there
is not such a strong asymmetry in dynamics between a
mixing and a demixing period [see Fig. 4(b)]. This effect
of the composition symmetry on the coarsening mecha-
nism likely is unique to Quid systems, and there is proba-
bly no such drastic effect for solid systems.

Next we discuss why an inhomogeneity with a large
spatial scale (the superstructure) is produced by periodic
spinodal decomposition. Evidently, the inhomogeneity is
enhanced by the selection in a mixing period due to the
fact that droplets smaller than lg disappear, while droplets
larger than lp survive and continuously grow. Further,
the process in a shallower-quench demixing period plays
a key role in producing the heterogeneity. During this pe-
riod, there is an outward diffusion field around a domain
to reduce the concentration difference between the two
phases [4,13]. The concentration in a region sandwiched

by two neighboring domains approaches the final equilib-
rium one faster than that in the other regions simply be-
cause of the geometrical reason. The resulting imbalance
of diffusion fI.ux causes an attractive interaction between
domains, which eventually leads to the formation of the
superstructure. This mechanism works for both bicontin-
uous and droplet phase separations. For a bicontinuous
pattern, further, there is an additional effect: Once some
difference in tube size is formed, it will be enhanced by
tube hydrodynamic instability [12].

The formation of the superstructure can be regarded as
an analog of normal phase separation. Here we call the
volume fraction of the large domains P~„s,. For T ) T*,
P~,„s,is always zero, while P~,„s,increases with time for
T ( T". In this sense, @t„s,is the characteristic param
eter of the dynamic phase transition Pt„&,is a .slowly
increasing function of time for T ( T* and, finally, ap-
proaches the value thermodynamically determined. For
an off-symmetric composition, there is a long incubation
time for the growth of P~„s,. This incubation time be-
comes shorter with an increase in the composition sym-
metry of the mixture, since its increase shortens the inter-
droplet distance and effectively strengthens the interdroplet
interaction. It also becomes shorter with a decrease in T
which reduces the mixing period, and finally disappears
for AT + T ( Tb„. Although there is no energy barrier
for this process, there is a time barrier for coarsening due
to a weak interdroplet interaction. The existence of the
incubation period is common to a metastable state, as in
nucleation-growth behavior for a normal single quench.
For a symmetric composition, on the other hand, Pt,„s,
starts to increase immediately after the initiation of pe-
riodic spinodal decomposition. A homogeneous domain

structure is unstable even in the early stage, because of a
strong interaction between the elementary domains, or the
intrinsically nonlocal nature of a bicontinuous pattern. The
absence of the incubation period is common to an unsta-
ble state, as in spinodal decomposition for a normal single
quench. On the analogy of normal phase separation, we
can newly define two kinds of dynamic stability, dynamic
instability for a symmetric periodic quench and dynamic
metastability for an off-symmetric periodic quench. The
boundary composition likely is correlated with the com-
position of the percolation limit and also with AT (see
Fig. 5).

Finally, we discuss the general implications derived
from our study. The dynamic stability of periodic phase
transitions can be generally classified into three types.
(i) When the characteristic speed of ordering in an order-
ing period (v,„q)is slower than that of disordering in a
disordering period (vz;, ), the system is in a steady sta-
ble state (dynamic stability). (ii) When v„q—vq;„ the
transition takes place very slowly with an incubation time
(dynamic metastability). (iii) When v„,q » vq;„the tran-
sition takes place quickly without any incubation time (dy-
namic instability). For a binary Iluid mixture, for example,
hydrodynamic coarsening increases v„&drastically only
for bicontinuous phase separations, and leads to dynamic
instability It should . be noted that the interdomain inter-
action sometimes affects the ordering speed strongly. We
believe that this classification of the dynamic stability in
terms of the relation between v„zand v~;, is likely valid
for any order-disorder transition, which include not only
phase separation but also other ordering processes such as
crystallization and magnetic ordering.
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