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Intrinsic Localized Anharmonic Modes at Crystal Edges
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Using a realistic lattice-dynamical model for a diatomic crystal, time-periodic anharmonic vibrations
have been found with displacement pattern localized at an edge of the crystal. The localization is
not only in the direction normal, but also in the directions parallel to the edge along which the lattice
is periodic. These vibrational modes are three-dimensional analogs of the intrinsic localized modes
studied earlier in linear chains or in higher-dimensional lattices with only a scalar degree of freedom
per lattice site. The stability of these modes over times much longer than the vibrational period is
tested and verified by molecular dynamics.

PACS numbers: 63.20.Ry, 63.20.Pw, 68.35.Ja

A light mass impurity in an otherwise homogeneous
host crystal can give rise to a vibrational mode with dis-
placements strongly localized at the defect site. It is an
intriguing fact that stationary time-periodic lattice vibra-
tions with displacements very similar to these localized
defect modes have been found in lattices without any de-
fect [1—4]. The localization is in this case achieved by
the anharmonicity of the interaction potential. The time
dependence of these anharmonic vibrations is almost si-
nusoidal, since their higher harmonic frequencies are far
above the spectrum of linear phonon modes.

These intrinsic localized anharmonic modes are distinct
from lattice solitons in the Toda chain [5], for example, as
they are stationary and do not move through the lattice. In
fact, the monatomic Toda chain does not admit solutions
that correspond to intrinsic localized modes because of
the high content of cubic anharmonicity in the exponential
potential. Another integrable nonlinear 1D lattice system,
the Ablowitz-Ladik model [6], does admit stationary
localized soliton solutions. However, this model being
a discrete version of the nonlinear Schrodinger equation
(NLS) with complex variables does not correspond to a
vibrational system. The continuous nonlinear Schrodinger
equation, on the other hand, describes modulations of
a carrier wave in the presence of dispersion and weak
nonlinearity. Under certain conditions, it may have bright
envelope soliton solutions that are stationary. This idea
underlies the early predictions of Kosevich and Kovalev
[1],and we will make use of this concept in the following.

So far, investigations of intrinsic localized anharmonic
modes have been restricted to lattice-dynamical models
with only a scalar degree of freedom per lattice site
(apart from very recent work on two-dimensional lattices
with two-component displacements [7]), and mostly one-
dimensional lattices (linear chains) have been considered.
Up to now, it is therefore questionable whether intrinsic
localized modes exist as vibrational modes in real three-
dimensional crystal lattices, i.e., with the dimension of
the lattice being three and the displacement vectors being
allowed to have three nonzero components.

In the first work on intrinsic localized anharmonic
modes, quartic or higher anharmonicity had been taken
into account. Later, it was realized that cubic anharmonic-
ity gives rise to important effects [8,9]. It introduces a
static strain in addition to the periodic vibrations and can
cause instability of the mode. Even more crucial, it low-
ers the frequency of the anharmonic mode. Using realistic
potentials with their high amount of cubic anharmonicity,
intrinsic localized modes have, in fact, not been found in
monatomic lattices, since the frequencies of these modes
would have to be above the linear spectrum [9]. However,
such modes have been found in diatomic linear chains
with frequencies in the gap between the optic and acous-
tic phonons [8,10].

In this Letter, we predict the existence of a vibrational
mode at the edge of a diatomic cubic crystal that is
localized in all three spatial dimensions and has three-
dimensional displacement vectors. This prediction is
based on realistic interaction potentials commonly used in
lattice-dynamical model calculations. We also describe
the way in which this intrinsically localized edge mode has
been found as it may be useful in further investigations.

The edge of a crystal can be regarded as a natural
generalization of a linear chain. This is because of the
existence of linear edge modes which are localized in the
directions normal to the edge, but of plane-wave character
in the direction parallel to the edge. Localization in the
latter direction is then achieved by anharmonicity. A
further aspect which motivates the studies of surface and
edge geometries in the present context is that at surfaces
and edges (which may be edges of steps on a surface)
intrinsically localized modes should be more accessible
for experimental excitation and detection techniques than
in the bulk of the crystal.

In the calculations, a diatomic crystal is considered
with interactions between nearest and second-nearest
neighbors. The Coulomb and Born-Mayer potentials are
used with parameters and masses of the lattice particles
chosen such that several physical properties of NaI are
correctly reproduced, including the bulk lattice constant a,
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the elastic moduli c~~ and c~2, and the surface relaxation
of Nal known from shell-model calculations [11],

2

V (r) = + n exp( —P r).

u(81~, t) = (—1) e (1~) exp( —i root)A + c.c. (2)

Here, 8 labels the elementary cell and l~ denotes the
position of the atom in the elementary cell. The real
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FIG. 1. Phonon spectrum of a crystalline bar with 9 X 9
atoms per layer (cross section). The dashed line corresponds to
edge-localized modes.

The upper sign refers to the nearest, the lower to the
second-nearest neighbors. The four parameters of the
Born-Mayer potentials and the ionic charge Q are those
of model B in Ref. [12]. The potentials (1) are expanded
in a Taylor series up to fourth order in the deviations of
the actual distances r from the equilibrium distances I.p.

Figure 1 shows the spectrum of the phonon modes of a
quadratic bar of infinite length. Here, q is the 1D wave
vector along the axis of the bar. In the calculation, the bar
has 9 X 9 ions per layer (cross section). The positions of
the ions have been relaxed in the directions normal to the
bar axis, while the lattice constant along this axis has been
fixed to the bulk value a of the lattice parameter.

In the gap between acoustic phonons and optic bulk
phonons, a narrow band of optic surface phonons is
situated. In the neighborhood of this surface band, single
dispersion branches like, for example, the dashed curve
are visible. They correspond to fourfold degenerate
phonon modes having displacements strongly localized
at the edges of the bar. This is demonstrated in Fig. 2,
where the displacement pattern of a zone-boundary mode
(marked by 0 in Fig. 1) is shown in two consecutive
cross sections (i.e., in one elementary cell) of the bar. The
atoms with the largest vibrational amplitude are the light
atoms right at the edge. They vibrate normal to the edge
direction at an angle of 45 to the two surfaces forming
the edge. Formally, the atomic displacements u(ZK, t) at
time t associated with the zone-boundary mode can be
written as
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FIG. 2. Displacement pattern in two consecutive layers (a)
and (b) of the harmonic edge mode marked by 0 in Fig. l.
Only the lower left corners of the two layers are shown. The
displacements in layer (b) are along the bar axis.

vectors e(1~) are the displacement profiles displayed in
Fig. 2, ~p is the frequency of the harmonic edge mode,
and A is a complex amplitude, which is a constant in
the harmonic case. The influence of anharmooicity can
be accounted for in an approximate way by letting the
amplitude A depend on a stretched time coordinate ~ and
a spatial coordinate g = Za, which is treated as being
continuous. Standard asymptotic theory then yields the
nonlinear Schrodinger equation

B2
+ D + &IAI' A = o. (3)Br

The parameter D is the curvature of the dispersion
branch at the boundary of the Brillouin zone and the
coefficient N of the effective quartic anharmonicity is
the sum of three contributions: The first results from
the quartic anharmonic force constants and its sign
depends on the signs of these constants. For the zone-
boundary mode under consideration it is positive. The
second contribution is due to static displacements, which
are generated by the vibrational mode due to cubic
anharmonicity. It is always positive. The third part
results from the second harmonic of the mode and is
negative, if the second-harmonic frequency lies above
the harmonic phonon spectrum. This contribution can be
important if 2~p comes close to the phonon spectrum at
the center of the Brillouin zone. In our case, however, the
total coefficient N is positive, and, hence, anharmonicity
decreases the frequency of the zone-boundary edge mode.

Since the coefficients D and N have the same sign,
stationary envelope solitons of the edge mode exist with
widths and maximal amplitude being related to the shift
Ace of the frequency cu of the stationary localized mode
corresponding to the envelope soliton and the frequency
cop of the linear edge mode. This envelope soliton
solution is now used as an initial guess for a solution of
the full equations of motion for the atomic displacements.
Extending the rotating wave approximation, the following
ansatz is made for the displacements:

2

u(Zv, t) = g exp( —inset)U„(Sir) . (4)
fL= 2
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The inclusion of the second harmonic in (4) proves
to be important to obtain accurate initial conditions
for intrinsic localized modes in molecular dynamics
simulations. Tests including the third harmonic in (4) did
not yield considerable improvements. From the equations
of motion, one obtains a system of equations that has the
form of a nonlinear eigenvalue problem and reads in a
short-hand notation

(nrem) MU„+ 42 U„+

QADI)3

U U„

+ /4'4 U UkU„p = 0. (5)
k, m

Here, M is a diagonal matrix containing the ionic masses,
while the tensors (I), j = 2, 3, 4, are calculated from
the force constants of second, third, and fourth order,
respectively. Starting with the trial solution

Ul(6e) = —2/sou/N sech( —/ssc/D 6c) e(e) (6)

at the fundamental frequency co and Uo = U 2
= 0, the

system of equations (5) is solved in the following iterative
way: At fixed frequency, the subsystems of (5) with
n = 0, 2 are solved for U, n = 0, 2, respectively, using
the Newton-Raphson scheme. Then, the frequency is
updated by using one equation with n = 1 involving the
maximal amplitude. Snbsequently, the subsystem with
n = 1 is solved for U~ and all amplitudes are rescaled
such that the maximal displacement has its previous
value. In the following steps of the iteration, the three

subsystems with n = 0, 1, 2 are solved for U, n =
0, 1, 2, respectively, retaining the amplitudes U withI 4 n from the previous iteration step. Subsequently,
the frequency is updated and all amplitudes are rescaled.
This procedure is repeated until convergence is achieved.
Because of the strong localization of the modes, it was
possible to restrict the system size to a bar consisting of
20 layers with 4 X 4 atoms per layer. Tests with 6 X 6
atoms per layer have also been carried out, which confirm
the results obtained in the smaller system.

In this way, solutions of (5) have been found that cor-
respond to stationary anharmonic modes that are strongly
localized in all spatial directions. Figure 3 shows the vi-
brational amplitudes 2~U) ~

of the atoms right at the edge
along the edge direction for two different solutions. It
demonstrates the strong localization of the mode along the
edge direction, where the lattice is periodic. Obviously,
the mode with the higher maximal amplitude is localized
more strongly. The displacement pattern in the plane nor-
mal to the edge direction is very similar to that of the
linear zone-boundary mode. In addition to anharmonic
modes localized at one edge of the quadratic bar, there
are solutions of (5) having corresponding displacements
localized at more than one edge. They all have the same
fundamental frequency if the system is sufficiently large.
This degeneracy provides a useful test.
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FIG. 3. Vibrational amplitudes of the atoms right at the edge
along the edge direction in units of the bulk nearest neighbor
distance. The solid and dotted lines correspond to two different
intrinsic localized modes, respectively.
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FIG. 4. Frequency ~ as a function of the maximal vibrational
amplitude (u „~ (in units of the bulk nearest neighbor
distance). The dotted line is the result of the NLS.

In Fig. 4, the relation between the frequency shift
Ace and the maximal vibrational amplitude ~u~, „~ of the
intrinsic localized modes is compared with the predictions
of the NLS. For large maximal amplitudes the numerical
results deviate strongly from the NLS result, and the
1ocalization is much stronger than that of an envelope
soliton with the same peak amplitude. This may be
connected with the flatness of the dispersion curve of the
linear edge modes, being no longer parabolic for wave
vectors not in the immediate neighborhood of the zone
boundary. At maximal vibrational amplitudes of the order
of 40% of the nearest neighbor distance, one has to reduce
the width of the initial guess of the solution of (5) in order
that the search algorithm converges.

Solutions found by this method have been verified in
molecular dynamics simulations. Over more than 200
vibrational periods, the maximal vibrational amplitudes
changed by less than 3%. This indicates that the mode
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is either stable or, if it is unstable, the associated growth
rate is very small.

The search procedure outlined above has been tested
for the simpler system of predominantly transverse vibra-
tions of a prestressed linear chain with springs obeying
Hooke's law between neighboring atoms. Intrinsic local-
ized anharmonic modes have been found with transverse
displacements vibrating at the fundamental frequency co

and with second harmonic and static displacement com-
ponents in the longitudinal direction. A stability analysis
following Refs. [13]and [14] reveals that these modes are
weakly unstable with growth rates that grow with increas-
ing degree of localization.

In conclusion, we have reported for the first time
about the existence of an intrinsic localized anharmonic
vibrational mode situated at the edge of a diatomic three-
dimensional crystal having three-dimensional atomic
displacements. The strong localization along the direction
of the edge is generated by the anharmonicity of realistic
interaction potentials. These results strongly support
the predictions that intrinsic localized modes exist as
vibrational modes in 3D crystals. Anharmonic localized
edge modes of the kind discussed in this Letter can also
occur at large steps on surfaces. For their excitation and
detection, surface imaging techniques with high spatial
resolution like, for example, a tunneling microscope might
be applicable. We hope that our results will serve as a
stimulus for the experimental discovery of such modes at
edges or surfaces in the near future.
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