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Defect Dynamics for Spiral Chaos in Rayleigh-Benard Convection
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A theory of the novel spiral chaos state recently observed in Rayleigh-Benard convection is proposed
in terms of the importance of invasive defects, i.e. , defects that through their intrinsic dynamics expand
to take over the system. The motion of well developed spiral defects is dominated by wave vector
frustration, rather than a rotational motion driven by a vertical vorticity field. This leads to a continuum
of spiral frequencies, and a spiral may rotate in either sense depending on the wave vector of its
local environment. Results of extensive numerical work on equations modeling the convection system
provide confirmation of these ideas.

PACS numbers: 47.20.Bp, 47.27.Te

A novel spatiotemporal chaotic state in Rayleigh-
Benard convection consisting of dynamic spirals or tar-
gets has recently been discovered experimentally [1,2],
and then reproduced numerically first in equations that
approximately model the system [3] and then in the full
thermally driven Navier-Stokes equations [4]. This "spi-
ral chaos" state is particularly interesting because it occurs
for parameter values where the familiar state of straight
parallel convecting rolls (the "stripe" state) is known to be
stable, and because the spiral geometry, although familiar
in chemical reaction diffusion systems, was completely
unexpected in this system where the ideal state is static.
The spiral state also provides an intriguing example of the
phenomenon of "defect chaos" where persistent dynamics
is apparently associated with easily identified defects or
coherent structures. Although numerical work has repro-
duced the experimental results with remarkable accuracy,
there is still little theoretical understanding why the spiral
chaotic state develops, or of the dynamic behavior of the
spiral or target defects within the chaotic state.

In this paper we introduce the idea of an invasive de-
fect—a localized structure that through its intrinsic dy-
namics tends to grow and take over a significant portion
of the system —as a way to understand the instability (or
rather, lack of persistence) of nonideal states towards the
chaotic state. We analyze the dynamics of individual spi-
rals and targets based on a slow-variation approach known
as "phase equations" and show that "wave vector frus-
tration" is crucial to understand this dynamics. Perhaps
surprisingly, quid vorticity plays a secondary role in the
dynamics of the spirals: The spirals appear to rotate be-
cause of the radial motion of the rolls induced by wave
vector frustration exactly as in the radial motion of the axi-
symmetric target states. This leads us to a prediction for
when the spiral chaos state should be expected. We ana-
lyze the transition between a spiral dominated state and a
target dominated state in terms of a novel core instability of
an axisymmetric target to nonaxisymmetric perturbations.
In addition, we present results of extensive numerical in-
vestigations of classes of model equations that allow us to

test these ideas, and for the first time numerically demon-
strate the spiral to target transition.

Our theoretical analysis is based on the "phase equa-
tion" [5]—a dynamical equation for a variable describing
displacements of a local stripe pattern. An important fea-
ture of the convection system is that this dynamics is cou-
pled to an additional long wavelength mode consisting of
a horizontal fIuid fiow with nonzero mean averaged over
the depth of the cell. Such a flow is induced by distortions
of the convective rolls (e.g. , curvature) and in turn advects
the rolls. Since the mean How must be divergence free by
the near incompressibility of the fiuid, it takes the form
of a stirring motion, and may be completely described in
terms of a vertical vorticity A. Previous work [3,4] on
the spiral chaos has suggested that the vertical vorticity
resulting from the chiral nature of the spiral state may be
important in the observed dynamics of the spirals. We
find that the role of A is more subtle than this.

The phase variable 0(x, t) is defined as a function of
time and the horizontal coordinate x = (x, y) so that the
local wave vector is q = 7'0. An expansion in slow
variations of a basic stripe pattern yields the equation [5]

0+ U q = ~ t(q)V . [qa(q)], (1)
where U is the divergence free mean How completely
characterized by the vertical vorticity A = z V' X U, in
turn driven by distortions of the stripes

0 = —y(q)z . V' X fq 7' . [qA (q)]] . (2)
In these expressions ~, y, A, and 8 are functions of the
magnitude of the local wave vector and depend on the
control parameter as well as other fluid parameters. In (2)
we have used the simplified form valid near threshold [5]:
The complicated expression valid more generally [6,7]
should not change the conclusions.

From these equations we show that the spiral dynamics
is induced by the radial motion of rolls forced by
wave vector frustration rather than by a rotation of the
structure driven by a vorticity field induced by the chiral
structure. Since the wave vector frustration depends on
the environment of each spiral, the rotation frequencies
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may take on a continuum of values instead of a unique
value as found for chemical spirals [7). In addition,
a spiral of a given chiral sense may rotate in either
direction depending on its environment. Note, however,
that spirals that rotate against their chirality will unwind
and disappear from the system, so that a prevalence of
corotating spirals is expected.

These results are readily obtained by integrating (1)
for the phase of a spiral 0 = k(r)r + mP —cut over
a cylindrical geometry radius R with R » 1 for a well
developed spiral:

d rr(q) = d rr(q)U. q

B(q)q„r dP
r=R

(3)

(Here r and P are cylindrical polar coordinates. ) The
second term on the right, which is also present in the
axisymmetric target case, is zero if q = qf, the "focus
selected wave number" [8] defined by B(qf) = 0 [5],
and is nonzero only if the wave number is held away
from this value by some other means (wave vector frus-
tration). In this case the contribution to ~ is of order
r B'(qf)qf (q —qf)R ' with r an average of r(q) over
the cell. We can estimate the size of the first term by cor-
respondingly integrating the vorticity equation (2)

d r[y(q)] 'A = — V' . (qA )q dl
R

+ V' . (qA )q . dl. (4)
r~O

It is readily checked that for R » 1 where A ~ const
the first term on the right-hand side goes as R '. If the
amplitude A remained constant as r ~ 0, the second term
would diverge as I" '. Instead A ~ 0 over the coherence
length g for spatial variations of the amplitude of the pat-
tern, to give a large but finite contribution. Thus the in-
tegrated vorticity is dominated by a contribution localized
in the core region where amplitude and phase are rapidly
varying, consistent with numerics [3]. Now U . q =
U~m/r —

ming

/r with A an average vorticity, so that
the first term in (3) gives a contribution to the frequency
cu proportional to R, smaller by the factor R

The invasive nature of spirals and targets rests on the
comparison of the background wave number qb with qf .
If qb ) qf then rolls will tend to move into the defect
center, a spiral will "unwind, " and, unless there is some
coherent source of these rolls elsewhere, the background
state will tend to take over the spiral or target; on the other
hand, if qb ( qf the target or spiral will tend to invade
the background. Note that the invasive spirals rotate in
the same direction as their chirality. The question of what
to assume for qb is quite hard, and in the dynamic state
a range of values is to be expected. We propose that
since the background state often contains many stationary
or slowly moving roll dislocations, a typical value for FIG. l. Spiral defect ending in a dislocation.
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qb is the value q~ of the wave number at which an
inserted dislocation has zero velocity along the rolls
(climb velocity) [9,10]. This leads to the prediction that
spiral or target chaos is expected for roughly q& ~ qf.

The combined motion of a spiral and dislocation can be
understood more fully by considering the situation shown
in Fig. 1 with a single dislocation terminating a spiral at
radius R. The motion can be split into two components.
There is an outward motion of the rolls, driven by the
curvature, at a speed n(qf —q)/qR with a a positive
proportionality constant and q the wave vector at the dislo-
cation: this would leave the spiral as shown by the dotted
line. On the other hand, the dislocation will climb at a
speed P(q —qz), moving in the azimuthal direction and
shortening the spiral, with P another positive proportion-
ality constant. A steady state solution in which the spiral
rotates at constant rate and with constant length exists if
these effects cancel, i.e., if q = (nqf + Pq~)/(n + P),
a weighted mean of qf and qz.

We have investigated this picture in numerical simu-
lations of equations modeling the convection system as
in the work of Xi, Gunton, and Vinals [3]. In this ap-
proach the system is described by an equation for a real
field P(x, t), a function of horizontal coordinates and time
only, that represents the horizontal structure of the con-
vection pattern. The dynamical equation for P is based
on the Swift-Hohenberg equation [11]that has been much
used in the study of stationary patterns and transient re-
laxation processes [7]:

0 + U. ~A = ~it —(~'+ I)'0 —g0'
+ 3(1 —g) (~0)'~'0, (5)

where again U is the vorticity induced mean How, driven
by distortions of the field P. For g = 1 Eq. (5) reduces
to the Swift-Hohenberg model. The additional nonlinear
term [12] for g 4 1 yields a more accurate reproduction
of the quid stability balloon and provides an additional
tuning parameter to investigate transitions in behavior.
We report here results for the same form of vorticity
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driving used by Xi, Gunton, and Vinals [3]:
f), —o.(V —c )A = g z . V(V P) X VP, (6)

where o is the quid Prandtl number and g determines
the strength of the coupling between the mean How and

We have also studied the case of "filtered vorticity*'

introduced in Ref. [12], and "passive vorticity" with no 0,
term with similar results.

We have fixed e = 0.7, o. = 1, c = 2, as in Ref. [3],
and have varied the vorticity coupling g and the non-
linearity coefficient g. Our simulations are done in a
square geometry with periodic boundary conditions using
the same numerical scheme as in Ref. [13]. A dynamic
spiral or target state rapidly forms from random initial
conditions over a wide range of parameters. We indeed
see spirals rotating in either direction relative to their chi-
rality, although corotating spirals are much more numer-
ous, as expected.

We have studied the defect chaos state as a function of
g and g to assess the importance of qf and qd. Figure 2
shows the spatial structure at time 4000 after random initial
conditions in a system of size 200 X 200 using dynamic,
unfiltered vorticity. Panel (a) shows the dynamic spiral
state for g = 50 and g = 1. As g is reduced targets
become more widespread, e.g. , panel (b) with g = 10.
Finally, as g is reduced further, panel (c) with g = 2,
the target-spiral state disappears, and the pattern freezes
into a disordered stripe state. If alternatively g is reduced,
changing the form of the nonlinearity, the spatial structure
remains rather unchanged, until at low g again the spiral
structures disappear, but now to a new dynamic state in
which dislocation pairs, evident in panel (d) with g = 0.2,
rapidly migrate across the system. The quantitative aspects
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of the evolution of the structures with g and g are shown
in Fig. 3. Both as a function of g and g the mean wave
vector is seen to follow a trend consistent with a weighted
mean of qf and qd, except for the lowest g where, in
fact, the spatial structure shows few spirals or targets.
In addition, the spiral or target state disappears when qd
approaches qf, although we do not have a model for which
the qf and qd lines actually cross. It should also be noted
that the wave vector distribution is not determined by the
stability boundaries. This is shown, for example, in (b)
where the distribution varies with g, whereas the Ecl&aus
stability boundary does not. The irrelevance of the cross-
roll instability is shown by similar results (not shown) for
the model with filtered vorticity [12] where the cross-roll
line is suppressed to larger wave vectors.

Further insight into the spiral-target transition is given
by considering the dynamics of a single target in an axi-
symmetric geometry. Figure 4 shows time independent
solutions constrained to axisymmetry in a circular geome-
try with boundary conditions P = r)P/r)r = 0 that act to
pin the phase of the rolls at the outer boundary. As the
radius is increased, the rolls are stretched and the value of
the field at the center goes up or down, until eventually a
new roll is nucleated at the center. For the parameters used
in Fig. 4 this event is hysteretic; if the radius is decreased
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FIG. 2. Disordered states at time 4000 after random initial
conditions in a system of size 200 X 200 for dynamic unfiltered
vorticity showing the variation of the patterns as g and g are
varied. Values are (a) g = 1, g = 50; (b) g = 1, g = 10;
(c) g = 1, g- = 2; (d) g = o 2, g
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FIG. 3. Wave number distribution in disordered states as in
Fig. 2 as a function of (a) g for g = 50, and (b) g for
g = 1. The symbols are the mean wave vector and the error
bars give the standard deviation, both given by a Gaussian fit
to the distribution. The lines show qf and the wave vectors
for the characteristic instabilities of straight parallel rolls
(E: Eckhaus; SV: skew varicose; CR: cross ro11) [14], and
qd given by separate numerical calculations of the velocity of
climb of a pair of dislocations in straight roll backgrounds of
various wave vectors, as in Ref. [10].
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FIG. 4. (a) Variation of the field P(r = 0) at the center of
a target as a function of the radius of the system. Notice
the hysteretic transition. The states represented by the filled
symbols are unstable to an m = 1 distortion. The vertical
arrow denotes a possible jump in a dynamic target state, leading
to an m = 1 unstable state. (b) Radial dependence of the
eigenvector of the unstable mode at the point A as well as the
stable eigenvector with largest eigenvalue at the corresponding
point A' on the stable branch. Notice the localized nature of
the instability. Parameters are g = 1, g = 50, and e = 0.7.

the roll disappears at a smaller radius than the one at which
the nucleation occurred. Numerical linear stability analy-
sis shows that the portion of the curve with filled symbols
in Fig. 4 is unstable to an I = 1 symmetry breaking per-
turbation (the most unstable mode). The eigenvector of
the instability (Fig. 4) is localized at the core of the tar-
get, in contrast to the instability studied by Newe11, Passot,
and Souli [15]. As g is decreased, the instability point P
moves closer to the point H where the hysteretic jump oc-
curs, and reaches this point at g = 21.5 so that for smaller
values of g al1 states in the hysteresis loop are stable to
m = 1 perturbations.

In the dynamics of a target in a disordered background
(e.g. , Fig. 2) we can suppose that the target will approxi-
mately pass through the sequence of states represented in
Fig. 4(a), with roll radiation corresponding to increasing
the radius. %'e cannot say exactly where the jump from
one branch to the other, corresponding to the nucleation
of a new roll, will occur. However, if the nucleation oc-
curs sufficiently early (e.g. , as shown in the figure), the
core will experience the nonaxisymmetric instability pro-
viding g is greater than about 20. This result is roughly
consistent with the trend seen in our numerics Fig. 2 from
mainly targets at g = 10 to spirals at g = 50.

In conclusion, we have proposed that the novel spiral
or target chaos state may be understood in terms of
the invasive dynamics of these defects. This dynamics
in which rolls are radiated from the center is driven
by wave vector frustration. For the spirals the rotation

induced by the vertical vorticity plays a secondary role
in the dynamics. The invasive dynamics depends on the
balance between the focus selected wave vector qf and
the background wave vector. The vorticity is, however,
important in generating the spiral core, and the target to
spiral transition may be partially understood in terms of
a nonaxisymmetric instability of the axisymmetric core
structure of a target. In addition, in the absence of the
coupling to the vertical vorticity, the wave numbers less
than qf that are expected in the far held are zigzag
unstable [7], so that the vorticity is also important in
stabilizing the pattern. Our proposal provides a criterion
for when spiral chaos may be expected. The weakest
part of our analysis is the identification of qd as a typical
background wave vector: alternative possibilities might be
a wave vector selected by another defect in the system
that acts as a sink of the rolls, or a wave vector at which
a roll destruction process develops, for example, by the
production of dislocation pairs or the nucleation of a
mobile dislocation from the core of a stationary defect. In
addition, our analysis involves idealizations that may not
be quantitatively accurate in all situations (e.g. , we discuss
well formed defects of large extent compared with the roll
size). Nevertheless, we believe these ideas are important
in understanding this novel and complex spatiotemporal
state.
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