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Lattice Boltzmann Simulation of Nonideal Fluids
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A lattice Boltzmann scheme able to model the hydrodynamics of phase separation and two-phase How
is described. Thermodynamic consistency is ensured by introducing a nonideal pressure tensor directly
into the collision operator. We also show how an external chemical potential can be used to supplement
standard boundary conditions in order to investigate the effect of wetting on phase separation and fluid
Aow in confined geometries. The approach has the additional advantage of reducing many of the
unphysical discetrization problems common to previous lattice Boltzmann methods.
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The hydrodynamics and kinetics of two-component
Auids present a wealth of physical problems of both
fundamental and technological importance [1]. There is
much current interest in the relevance of hydrodynamics
to spinodal decomposition [2] and the effects of substrates
with different wetting properties on phase separation and
domain growth [3]. In addition, the fiow properties of
multicomponent systems, particularly in porous media,
have been intensively studied and are of great relevance
to oil recovery [4].

Conventional methods for simulating two-phase How
include numerical integration of the Navier-Stokes equa-
tions and molecular dynamics simulations [5]. These
techniques are extremely computationally intensive and
particularly difficult to implement in random geometries.
A newer approach, the lattice Boltzmann method, has re-
cently proved competitive [6]. Here a set of distribution
functions defined on a lattice is allowed to relax to equi-
librium via a Boltzmann equation, discrete in both space
and time. The correct choice of equilibrium distribu-
tion ensures that in the long wavelength limit the Navier-
Stokes equations are recovered.

Several authors have set up lattice Boltzmann schemes
for two-phase systems. In most approaches interface for-
mation has been introduced phenomenologically by modi-
fying the Boltzmann collision operator to impose phase
separation [7]. Recent work by Shan and Chen [8] has
attempted to relate phase separation to microscopic inter-
actions by redefining the equilibrium velocity distribution
so as to simulate a Quid with a nonideal equation of state.
However, their approach leads to inconsistent thermody-
namics unless a particular equation of state is chosen. In
addition, all current schemes reach equilibrium distribu-
tions which have unphysical velocity fluctuations within
the interfacial region [9].

In this Letter we show for the first time that it is
possible to set up a lattice Boltzmann scheme modeling
isothermal hydrodynamics for two-phase systems. This
is achieved by introducing directly into the collision
operator the equilibrium pressure tensor for a nonideal
quid. The resulting phase transition is pressure driven,

as pertinent to a liquid-vapor system quenched to well
below the critical point [10]. The lluid reaches the correct
thermodynamic equilibrium as determined by the equation
of state and a Maxwell construction.

We first summarize the relevant results from the van
der Waals formulation of quasilocal thermodynamics for
a two-component Quid in thermodynamic equilibrium at
a fixed temperature [11]. The free energy functional is
taken to be

W(r) = —~Vn(r) ~
+ P(n(r)) dr,

2

where the first term gives the contribution from any
density gradients and the second describes the bulk free
energy density. The nonlocal pressure is defined by

6%
p(r) = n

6n

(2)

where po = nP'(n) —P(n) is the equation of state of the
fluid. To obtain the full pressure tensor in a nonuniform
fluid, nondiagonal terms must be added [12]:

0n Bn
P p(r) = p(r)6 p+ tc . (3)

Bx~ Bxp

In equilibrium the components of the pressure tensor
define the surface tension in inhomogeneous regions of
the fluid.

We next describe how a lattice Boltzmann simula-
tion can be set up to ensure that these equilibrium con-
ditions are met while incorporating the dynamical be-
havior pertinent to Auids, namely, order-parameter con-
servation and hydrodynamic transport. To illustrate our
method, we choose to work in two dimensions on a
triangular lattice, the simplest geometry that allows us
to reproduce the Navier-Stokes equations. Let f, (x, t)
be a non-negative real number describing the distribu-
tion function of the fluid density at site x at time t
moving in direction e;, i = 1, . . . , 6. The unit vectors
e; = (cos[2~(i —I)/6], sin[27r(i —I)/6] are the veloc-
ity vectors along the links of the lattice. With each site is
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also associated a function fo(x, t), which corresponds to
the component of the distribution with zero velocity.

The distribution functions evolve according to a Boltz-
mann equation which is discrete in both space and time

(8) and (9)

Ao = n —2(po —anV n),
A = (po —~nV n)/3,

f;(x + e;, t + 1) —f;(x, t) = A;(x, t). (4)

The most convenient choice for 0; is a single relaxation
time form [13j

B=n/3,
C = —n/6,

F =0,

Cp = —n,
D = 2n/3,

(5)

The density n and macroscopic velocity u are defined by
Bn Bn

3 Bx
(13)

nu =;e;
and the equilibrium distribution f, is chosen so as to
reproduce the correct dynamic equations for n and u.

For a one-component Quid with an ideal gas equation of
state, f; is expanded as a power series in the local veloc-
ity and the coefficients determined by local conservation
of mass and momentum and by the constraints of Galilean
invariance and isotropy of the pressure tensor. In order to
include the correct nonlocal thermodynamic properties of
a nonideal Quid, additional nonlocal terms are needed in
the expansion for f; . We thus define

where, on the lattice, derivatives are simply expressed by
finite difference approximations.

The continuum hydrodynamic equations modeled by
this dynamic scheme can be determined by performing
a Chapman-Enskog expansion on the Boltzmann equation
(4). To second order, the usual continuity and Navier-
Stokes equations result

Bn B(nu )+ =0,
Bt Bx

(14)

Bn~~ BnLtp o~ Bpp 2+ + vVnu
Bt Bxp Bxo

B+ [A(n)V nu], (15)
Bx~

where v = (2r —1)/8 and

f; =A+Be; u + Cu +Du upe; ep
+ Fo. ~in + +np~in~ip ~ (8)

(16)

fo =Ap+ Cpu,

(10)

eqf;e;=nu

The third constraint is that the pressure tensor takes the
form

eqf; e;~e;p = P~p + nu~up. (12)

The constraints (10), (11), and (12), together with
the equilibrium thermodynamic definitions (1)—(3), are
sufficient to determine the coefficients in the expansions

where the coefficients, now functions of n and its deriva-
tives, can be determined by three macroscopic constraints.

The first two are, as for the noninteracting case, local
conservation of mass and momentum

Note that to this order, the only difference between
Eq. (15) and the Navier-Stokes equation for an ideal fluid
is the appearance of the nonideal pressure pp.

To test the correctness and applicability of the approach
described above we performed simulations on a van der
Waals fluid for which

n
i/i = nTln

~

—an .
1 —nb) (17)

We first consider the equilibrium configuration for a
system with periodic boundary conditions and zero net
How velocity. The inset of Fig. 1 shows the coexistence
curve as a function of temperature T, calculated from
Eq. (2) using a Maxwell construction. The points show
simulation data obtained from lattices of size 256 X 256,
equilibrated for 10000 time steps. Because the correct
equilibrium thermodynamics is inherent in the model, the
bulk phases reached in the simulations obey the Maxwell
construction. Note the wide range of coexisting densities
that can be reached by the simulation before significant
finite difference errors come into play as the temperature
is lowered.
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FIG. 1. Equilibrium density proxies normal to a fiat interface
for a van der Waals fiuid for the three highest values of T
shown on the coexistence curve (inset). The solid lines are
numerical solutions of the continuum thermodynamic equations,
while the points are from the lattice Boltzmann simulations.
The parameter values are a =

49 and b =
2, , while sc = 0.019 = 2

for the bold curves and 0.02 for the dashed curve.

Figure 1 also shows the equilibrium interface density
profiles which are seen to depend, as expected, on ~ and the
temperature. Again the agreement with a direct integration
of the continuum thermodynamic equations, derived by
minimizing Eq. (1), is excellent. The interfacial width
can be varied, typically between -2 and 30 lattice sites.
This ensures that lattice anisotropy effects can be made
unimportant. Our mechanism for interface formation also
reduces the magnitude of the microscopic velocities in
the interfacial region. For example, we find a reduction
in the velocity by a factor of —10 [14] in comparison
with the liquid-vapor model of Shan and Chen [8]. This
is because our scheme conserves momentum locally and,
thus, there are no spurious corrections to the continuity
equation, Eq. (14). Furthermore, this eliminates the need
to redefine the fiuid velocity in the interfacial region [15].

In Fig. 2 we emphasize the consistency between the
mechanical definition of surface tension

o. = RAP, (18)
where b, P is the pressure difference between the inside
and outside of a spherical domain of radius R, and the
thermodynamic definition
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FIG. 2. AP plotted vs 1/R as a test of Laplace's law. The
solid line has a gradient calculated using Eq. (19).
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correctly described by the model. In Fig. 3 the disper-
sion relation for capillary waves is displayed [16] giving
a best fit of cu —O' . We attribute the slight discrepancy
from the expected dispersion relation ~ —k to curva-
ture corrections to Laplace's law. These results were ob-
tained by imposing a sine wave of a given wave vector on
an interface that had reached equilibrium in a 128 X 128
system and observing the period of the subsequent oscil-
lations for, typically, 500 time steps.

Finally, we demonstrate how the addition of an external
chemical potential at the surfaces of a confined system can
be used to supplement the usual bounce-back boundary
conditions, allowing us to change the substrate properties
and hence study wetting. Gradients in the chemical
potential p,„(r)act as a thermodynamic force on the

&Bn
dz

k ~z
(19)

for a flat interface. Agreement is seen as R ~ ~ with the
expected curvature correction to Eq. (18) appearing for
R ~ 10 lattice units.

Far from the interface, the fiuid obeys the usual
Navier-Stokes equation common to other lattice Boltz-
mann schemes. However, the dynamical behavior of the
interface itself is of importance if domain growth is to be
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FIG. 3. The dispersion curve for capillary waves on an
interface, plotted on a log-log scale. The best fit line has
gradient 1.6 ~ 0.05.
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