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Experimental Studies of Chaos and Localization in Quantum Wave Functions
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Wave functions in chaotic and disordered quantum billiards are studied experimentally using thin
microwave cavities. The chaotic wave functions display universal density distributions and density
autocorrelations in agreement with expressions derived from a OD nonlinear o model of supersymmetry,
which coincides with random matrix theory. In contrast, disordered wave functions show deviations
from this universal behavior due to Anderson localization. A systematic behavior of the distribution
function is studied as a function of the localization length, and can be understood in the framework of
a 1D version of the nonlinear o model.

PACS numbers: 05.45.+b, 03.65.Ge, 71.5S.Jv

Complexity in quantum mechanics can arise from two
sources: chaos and disorder. Nonintegrable systems
which are classically chaotic are now known to be of
relevance to a variety of atomic and nuclear phenom-
ena [1]. Disorder is of fundamental importance in con-
densed matter physics, where it leads to the phenomenon
of localization [2]. For quantum chaotic systems, ran-
dom matrix theory (RMT) has been shown to provide a
very good description of universal statistical properties of
eigenvalue spectra [3,4]. Recent developments in the the-
ory of disordered systems based upon nonlinear o models
using supersymmetry theory [5—7] have led to the recog-
nition that the extreme diffusive limit of disordered sys-
tems also behave similarly to quantum chaotic systems.
These theories have made several quantitative predictions
for correlations in mesoscopic systems, including the con-
tribution due to localization. However, these ideas re-
main to be tested experimentally. Experiments also have
added importance as several systems of quantum chaos
that have localization may behave similarly [8], e.g. , the
kicked rotator, which has been studied numerically, shows
deviation from RMT behavior [9].

While the eigenvalue statistics of quantum chaotic sys-
tems have been experimentally tested, the eigenfunction
statistics have not been done before. The principal rea-
son is the lack of accessibility to wave functions. In
atoms and nuclei, the nature of the wavefunctions is only
manifested indirectly in quantities such as transition rates.
Experiments using microwave cavities which exploit the
correspondence between the Maxwell and Schrodinger
equations are unique in that they allow direct measure-
ment of the eigenfunctions, as well as eigenvalues, in
model billiard geometries. Earlier such experiments have
provided direct observation of scars [10], enabled precise
tests of eigenvalue statistics [11],and have demonstrated
the ability to study arbitrary geometries which are not ac-
cessible to numerical simulation. In this paper, we use
such experiments to study the influence of chaos and lo-
calization on quantum wave functions.

The experiments were carried out using thin (d (
6 mm) cavities, whose cross sections can be shaped in es-

sentially arbitrary geometries. For these two-dimensional
cavities, the operational wave equation is (V + k )'It =
0. The details of the experimental method are described
in Ref. [12]. Eigenfunctions were directly measured us-
ing a cavity perturbation technique which measures ~W~

[10,12]. We study the manifestations of chaos and local-
ization in terms of statistical properties of the eigenfunc-
tions, such as the density probability distribution P(~"k~ )
and the density autocorrelation P2(r) = (~'It(q)

~
~'It(r +

q) ~ ), and the inverse participation ratio (IPR), P2(r ~ 0).
The geometries studied were representative of inte-

grable, chaotic, and disordered systems. Among chaotic
systems, besides the quarter Sinai billiard, we also study
the Sinai Stadium geometry introduced by us in Ref. [11].
The Sinai Stadium has isolated periodic orbits (PO*s), and
gives direct and exact agreement with RMT for the eigen-
value statistics, unlike the Sinai billiard and the stadium
billiard for which the nonisolated PO contribution leads to
deviations from universality [11]. Representative eigen-
functions for some of the geometries are shown in Fig. 1.
The 5.685 6Hz (Fig. 1, top left) state of the Sinai Sta-
dium is similar to almost a hundred other states of differ-

FIG. 1 (color). Representative eigenfunctions of the chaotic
Sinai Stadium billiard (top) and disordered geometry (bottom).
The blue dots are the disorder sites.
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ent energies that were observed, in that there are no visible
scars that can be evidently associated with a PO. Indeed,
scarred states are few and the 7.370 GHz state shown in
Fig. 1 (top right) is a rare coincidence with a whispering
gallery PO.

Localization effects were observed by fabricating bil-
liards in which tiles were placed to act as hard scatterers.
These geometries are obtained by placing 1 cm square or
circular tiles in a 44 && 21.8 cm rectangle at random lo-
cations (Fig. 1). (The locations were generated using a
random number geometry and the tiles were placed manu-
ally. ) Earlier experiments [13] on the eigenvalue spec-
trum of similar disordered geometries had shown that
these experiments exemplify textbook two-dimensional
electron systems without interactions to a remarkable de-
gree. To our knowledge, these geometries are difficult
to study using numerica1 computation, and hence the mi-
crowave experiments at present afford the only reliable
means to study this type of disordered systems. More
than one realization of the disordered geometry was ex-
perimentally studied, labeled D1 through D5 depending
on the density of scatterers (Table I).

Sample eigenfunctions of 03 are shown in Fig. 1. Here
again we have obtained nearly 100 wave functions. It
is evident that in these billiards any association with
classical structures such as periodic orbits is difficult to
see; although, of course, these bi11iards are also chaotic,
and such association must exist in principle. Instead
the most striking effect visible is localization, which is
strongest in the 3.372 GHz state, but is also present
in a weaker form in the 6.651 GHz state. The degree
of localization can be varied by either changing the
frequency window for a given geometry or changing the
density of tiles. Hence the mean free path l and also the
localization length s could be manipulated, the latter over
almost two orders of magnitude.

We first carry out an analysis of the chaotic wave
function. P(~%'~ ) is shown in Fig. 2 for the chaotic
geometries —the Sinai Stadium and the Sinai billiard.
These are compared with the well-known Porter-Thomas
(P-T) distribution obtained from RMT [14]:

P(I+I') = exp —
f

. (1)

The best agreement is shown by the Sinai Stadium.
The Sinai billiard displays slight deviations which we
attribute to states influenced by bouncing-ball orbits. In

1.00E+00

1.00E-01—
dlum

liard

—1.00E-02—

1.00E-03—

homas

1.00E-04—

1.00E-05
10

lyl

l5 20

FIG. 2. Density distribution P(~'lj'~2) for the Sinai Stadium
and the Sinai billiard compared with the Porter-Thomas form
from RMT. While the Sinai Stadium is in excellent agreement,
the Sinai Billiard data show slight deviations due to states
influenced by bouncing-ball orbits.
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an integrable system, the probability distribution is often
truncated, e.g. , for a rectangle at ~'Ir~ = 4, and is not
universal. In contrast, the chaotic wave functions show
a finite although exponentially vanishing probability of
finding large intensities, in exact agreement with the
P-T distribution, thus confirming their universal nature.
Numerical simulation of random superpositions of plane
waves was also done following Ref. [15] and also shows
very good agreement with P-T [16].

The density correlation Pz(r) was also determined
from the wave functions, and is shown in Fig. 3. The
angular brackets denote averaging over space q, over
angles between q and r, and finally over several states.
An important aspect of the present work is that our
experimental results for the chaotic and weak disorder
cavities (see later) are well fitted by the functional form

P2(r) = 1 + cjo(Icr),

TABLE I. The various disordered cavities.

Cavity

D1
D2
D3
D4
D5

No. of scatterers

12
27
36
36
72

l, cm

9
6
5
5
3.5

L, cm g/I.
32 10
31 5
31 4
31 4
30

2.85
3.14
3.50
3.54

kr
10

FIG. 3. Density correlation function Pq(r) for the chaotic
geometries. The solid line represents Eq. (2) with c = 2, as
expected from a supersymmetry approach.
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where k is the wave number. When computed for individ-
ual states, the result for Pz(r) still has the functional form
of Eq. (2), although the r ~ 0 value is slightly different.
However, when averaged over several states, the resultant
Pz(r) is a robust quantity determined by the geometry
alone. We further emphasize that we have checked and
confirmed that P2(r) is isotropic for the Sinai Stadium.
The asymptotic value of Pz(r ~ ~) = I can be under-
stood since Pz(r ~) ~ (lW(q)( )(l'I"(q)l ) ~ 1 as the
wave functions are completely decorrelated at larger dis-
tances.

The data for the Sinai Stadium yield c = 2 ~ 0.1. The
Sinai billiard yields c = 1.7 ~ 0.1. An understanding
of this value of c = 2 can be achieved by noting
that in general Pz(r 0) = ( W(q)~ ) = 1 + c. If x =
I+(q)l, then P2(r ~ 0) = fo x P(x)dx. Hence from
Eq. (1) we get P2(r ~ 0) = 3. Thus the value of c = 2
for the chaotic case is consistent with the P-T distribution
in Fig. 2.

The functional form in Eq. (2) with c = 2 has been
anticipated by Prigodin et al. [6,17], based upon a OD
o model of supersymmetry. This theory is expected to
apply to disordered systems in the diffusive limit, where
the wavelength A (( I (scattering length) (( L, the cavity
size. Results derived from this theory were earlier seen
to coincide with RMT [5]. Therefore, it gives the P-T
distribution for the eigenfunction components as in RMT,
but it also gives coordinate correlations not available from
RMT alone [6,17]. On the basis that for the diffusive limit
the randomization due to disorder of an infinite system is
the same as that due to chaos at the boundary of a finite
system, the results should apply to chaotic systems. Our
experiments confirm both these predictions of the OD o.
model for P(~'Ir l ) and P2(r) in the chaotic cavities.

We now turn to an analysis of the eigenfunctions
of the "disordered" geometries. We have divided the
obtained wave functions into two regimes. (a) A ~ l,
i.e., the wavelength is greater than the mean free path.
Here one observes strongly localized regions (Fig. 1,
bottom left). (b) At higher frequencies, where A ( l,
the disordered eigenfunctions have the expected feature
of apparently having maxima randomly distributed over
the available domain (Fig. 1, bottom right). In the
experimental window from 2 to 8 GHz (15 to 3.2 cm),
Dl is in regime (b), D2, D3, and D4 go from regime (a)
to (b), and D5 is in regime (a).

Figure 4 displays the density probability P(~'Ir l ) for D3
and D4 in regime (b) for data in the 6.5—7.75 GHz range.
The disordered data are clearly not in agreement with
the P-T distribution, displaying consistent and significant
deviations at the high intensity end, which are well beyond
experimental error. These correspond to localized regions
present in the disordered wave functions, in which the peak
intensity is large compared to the average intensity.

Recently, Mirlin and Fyodorov have been able to
calculate the localization corrections in a quasi-one-
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FIG. 4. P(~ Ij'( ) for two realizations of the disordered geome-
tries, showing deviations from Porter-Thomas due to localiza-
tion. The dashed line is a fit to Eq. (3). The dashed-dotted
line is fit to the strong-localization form in the text.

dimensional wire using a 1D nonlinear o. model of
supersymmetry [7]. They have also been able to extend
it to the full two-dimensional case of the cavity in
the delocalized regime [18]. For incipient localization,
the results can be expressed as corrections to the P-T
distribution given by

P(x) = f(x) exp( —x/2) /v'2vrx, (3)

where x = l'Ir(q)~ as before, and f(x) = 1 + d(1/4—
x /2 + x /12) for small d. Now d depends on the
localization length g and the density of disorder l /L
through d = L/(2zrg) In(L/I) for the two-dimensional
case [18]. This form is plotted in Fig. 3 for D3 and shows
that the 1D n model gives an accurate description of the
localization effects seen in the experiment. From the fit
to data for Dl to D4 in the 6.5 —7.75 GHz range, g/L are
extracted and listed in Table I.

P2(r) for D3 is shown in Fig. 5 and is well described
by the functional form Eq. (2). The c value obtained
from a fit is given in Table I. This is consistent, within
experimental error, with the values obtained directly
from the density distribution in Eq. (3), by using I PR =
fo x2P(x)dx = 1 + c = 3 + d[L/(ger)]In(L/t). This
higher value is therefore due to the high intensity peaks
observed in Fig. 1 and the non-P-T distribution function
in Fig. 4, and depends on the localization length.

In the strong localization regime (a) the deviations
are even greater as the effects due to localization are
even more pronounced. For strong localization, as in D5,
stronger deviations in P(l'I'l ) are seen which cannot be
described by corrections to the P-T form as in Eq. (3).
However, the data are well described by expressions
for strong localization, for the wire case, in Ref. [7].
The form P(x) = 8/(L/g) Q(L/g)/2xK~[2$2x/(L/g)]]
fits well, and a g/L value of 0.1 can be extracted for the
data in the 3—6 0Hz range; however, some constants are
expected to change due to dimensionality considerations.
Pz(r) also does not obey the expression [Eq. (2)], as is
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FIG. 5. P2(r) for the disordered wave functions showing
oscillations similar to the chaotic data. The solid line represents
Eq. (2) with c = 3.5 and kr rescaled by 0.96. (Inset) The
inverse participation ratio (IPR) vs. frequency for the D3 and
D4 cavities (circles), and the chaotic cavity (squares). The
dotted lines represent the limits of excursion of the chaotic data.
The dashed curve represents the behavior expected on the basis
of the 1D o. model.

extreme diffusive limit. They also demonstrate deviations
from universality due to localization. The results appear
to be consistent with a proposed notion of a (weaker) uni-
versality class [8] for systems with localization, in which
the statistical measures depend on one additional param-
eter —the localization length. The disordered billiards
used here are the first experimental realization of such a
system in which quantitative results have been obtained,
and the dependence on the parameter g/L has been quan-
titatively demonstrated, enabling tests of the nonlinear o.
model of supersymmetry theory, originally intended for
mesoscopic systems. These results are of potential rel-
evance to systems such as mesoscopic devices [19] and
acoustic and electromagnetic waves [20].

We thank V. Prigodin, B. Simons, Y. Fyodorov, and
A. Mirlin for useful discussions and for communicating
results prior to publication. This work was supported by
the ONR under Grant No. N00014-92-J-1666.

evident from Fig. 5. Instead spatial correlations die out
faster, perhaps exponentially. Although the experimental
data are available, further theoretical work needs to be
done to compare the data in the strong and intermediate
localization regimes.

An important perspective can be gained by examining
the IPR for different eigenstates that were measured for
both the chaotic and the D3 and D4 cavities, as shown
in the inset to Fig. 5. It is seen to fluctuate from one
eigenstate to the other —such level-to-level variations are
expected to have important characteristics [18],which will
be analyzed in future work. However, the IPR's for the
chaotic cavity are confined to a band around the limiting
value of 3, with an average of 3.2. In contrast, the IPR's for
the disordered cavity show an increase towards the lower
eigenstates, which tend toward the strong localization
regime, showing the dependence of localization length on
the frequency and the transition from regime (a) to (b).
Of course, deeper into the diffusion regime in which the
localization length becomes effectively "infinite", at large

f or small A, these also tend to 3, the value for the chaotic
case. The dashed line represents the functional form
for the IPR deduced above from Eq. (3), which extends

up to the regime A ~ I, and thus represented the small
localization limit of the 1D cr model.

In conclusion, we have been able to study the role of
chaos and disorder in organizing quantum wave functions
by means of electromagnetic experiments. The results
demonstrate universal properties of chaotic wave func-
tions, which also correspond to disordered systems in the

[1] M. Gutzwiller, Chaos in Classical and Quantum Meehan
ics (Springer-Verlag, New York, 1990).

[2] P. W. Anderson, Phys. Rev. 109, 1492 (1958);
E. Abrahams et al , Phys. R.ev. Lett. 42, 673 (1979).

[3] O. Bohigas, M. J. Giannoni, and C. Schmit, Phys. Rev.
Lett. 52, 1 (1984).

[4] M. L. Mehta, Random Matrices (Academic, New York,
1990), 2nd ed.

[5] K.B. Efetov, Adv. Phys. 32, 53 (1983).
[6] V. N. Prigodin, B.L. Altshuler, K. B. Efetov, and S. Iida,

Phys. Rev. Lett. 72, 546 (1994).
[7] A. D. Mirlin and Y. V. Fyodorov, J. Phys. A 26, L551

(1993).
[8] Y. Fyodorov, Phys. Rev. Lett. 73, 2688 (1994).
[9] G. Casati et al. , Phys. Rev. Lett. 64, 5 (1990).

[10] S. Sridhar, Phys. Rev. Lett. 67, 785 (1991).
[11] A. Kudrolli, S. Sridhar, A. Pandey, and R. Ramaswamy,

Phys. Rev. E 49, Rl 1 (1994).
[12] S. Sridhar, D. Hogenboom, and B.A. Willemsen, J. Stat.

Phys. 68, 239 (1992).
[13] S. Sridhar et al. , in Quantum Dynamics of Chaotic

Systems, (Gordon and Breach, Amsterdam, 1993), p. 297.
[14] F. Haake, Quantum Signatures of Chaos (Springer-Verlag,

Berlin, 1991).
[15] P. O' Connor, J. Gehlen, and E.J, Heller, Phys. Rev. Lett.

58, 1296 (1987).
[16] M. V. Berry, in Chaotic Behavior of Deterministic System

(North-Holland, New York, 1983), p. 171.
[17] V. N. Prigodin (unpublished).
[18] Y. Fyodorov and A. Mirlin (unpublished).
[19] R. Jalabert et al. , Phys. Rev. Lett. 65, 2442 (1990);

H. Baranger et al. , Phys. Rev. Lett. 73, 142 (1994).
[20] S. McCall et al. , Phys. Rev. Lett. 67, 2017 (1991).




