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Bubble Wall Velocity in a First Order Electroweak Phase Transition
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We calculate the velocity and thickness of a bubble wall at the electroweak phase transition in
the minimal standard model. We model the wall with semiclassical equations of motion and show
that friction arises from the deviation of massive particle populations from thermal equilibrium. We
treat these with Boltzmann equations in a Quid approximation. Our technique allows us to account for
particle transport, and to determine the wall thickness dynamically. We find that the wall is significantly
thicker than at phase equilibrium, and that the velocity is fairly high, v = 0.6c for mz = 50 GeV.

PACS numbers: 98.80.Cq, 11.10.Wx, 11.15.Ex, 11.30.Qc

There has been a growing interest in the idea that the
baryon asymmetry of the Universe may be created at a first
order electroweak phase transition. However, ingredients
needed to construct the whole picture are still missing. The
exact nature of the Higgs mechanism is unknown, and the
simplest model, the minimal standard model, apparently
does not contain sufficient CP violation for baryogenesis;
we must consider extensions, such as the two Higgs model.
Even in the minimal standard model we have difficulties
computing the finite temperature effective potential (which
is needed to determine the strength of the phase transition)
and the dynamics of the transition.

Recently there have been advances in calculating the
effective potential; the two loop contribution has been
evaluated [1,2], and there has been progress in under-
standing nonperturbative effects [3—5]. Both results
support the view that the phase transition is first order and
strong enough to proceed by bubble nucleation and
growth (even when the Higgs is moderately large,
mH mw)

To model baryogenesis accurately one also needs to
know the profile and velocity of an expanding bubble
wall. The wall velocity is friction limited, but determining
the strength of frictive effects involves determining the
nonequilibrium populations of massive particles in the
vicinity of the wall, which is difficult [6—8]. The recent
discovery that the top quark is very heavy [9] suggests
that top quarks may be the dominant source of friction,
in which case an approximation that models top quarks
with good accuracy should improve our understanding
of the wall motion. In this Letter we reanalyze the
bubble wall's velocity and its shape, working in the
minima1 standard model and using the fIuid approximation
to model the particle populations, which should treat
fermions fairly well. The technique also allows us to
account for transport and to determine the wall thickness
dynamically (taking a specific Ansatz for the wall profile).

We intend to study the dynamics of infrared conden-
sates in the Higgs field 4. Such condensates should be-

have semiclassically to a good approximation. From the
terms in the electroweak Lagrangian containing 4~,

L = (23~rIi)t23~4 —V(4 t4)

L+ I. g

(where the sum runs over the quarks and leptons t/t, and

y denotes the Yukawa coupling), we find the equations of
motion for P (where tIit = [0, @/~2)) to be

2

P + V'(P) — @TrA + P t/it/t = 0, (1)

plus terms linear in A. Here A and P are quantum
operators. (For simplicity we have set the Weinberg angle
tan0iv = 0.) It is reasonable to take thermal averages
of these operators using WKB wave functions. This is
because the wall will be much thicker than the thermal
length T ', which characterizes the reciprocal momenta
of particles in the plasma. In this approximation we get

dm d k

(2)

where V is the renormalized vacuum potential, f is the
phase space population density (in the background of
a propagating wall), and the sum includes all massive
physical degrees of freedom. Note the condensed notation
m = yP/~2 for quarks and leptons and m = g @/2 for
the gauge fields.

We write the population density f as the equilibrium
population fo plus a deviation f = fo + 6f. The vac-
uum contribution V'(@) and the contribution from fo
combine to give the finite temperature effective potential
VT(P). Thus we have [10]

dm dp
P + VT'(P) + g Bf(p, x) = 0.

dp 27r 32E
(3)

We see that the frictive force arises due to the departure
from thermal equilibrium 6f. We will use this equation,
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~ f + —'~.f + p.~,f = Clf], — (5)

where C[f] represents the scattering integral, E = (p2 +
mz)'tz is the particle energy, v, = p, /E is the velocity
(with the broken phase at positive z), and p, = —B,E
is the force on the particle. In a complete description

an expression for VT, and equations for 6f to compute the
wall velocity and its shape once it has reached a planar
steady state P = P(z + v t), Bf = Bf(z + v t).

The high temperature expansion of the one loop effec-
tive potential is [7]

VT(e) = D(T' —To)@' —Eo'T + (AT/4)0', «)
with D = (2m, + 2m' + mz)/8vo ——0.167, E =
(2miv + mz)/47rvo = 0.01, AT the Higgs self-
coupling at a scale roughly given by T, and To =

+ 3(4m, —2miv —mz)/87r vo]/4D. Recently,
the authors of [1] and [2] have computed the two loop
expression. The most important changes are that E
becomes [4m' + 2mz + 3(1 + ~3)A ]/12~v oand a
qualitatively new term B@ T —In(@/T) appears. The
result of [2] is B = (1.42g + 4.8g A —6A )/167r2. It
may also be important to include nonperturbative effects.
Shaposhnikov proposes a term (At g —T /12) Pit(@)
[3]. The function Pit describes the contribution of
a gauge condensate and it is roughly constant near

@ = 0 and falls exponentially as exp( —P/g T) for large
We add such a term to parametrize our ignorance

about the free energy of the symmetric phase; we use

(Af g T /1 2) sech (P /n T) because it is simple —the
exact form of Pit will have little effect on our calcula-
tions —and we take AT and Ay as unknowns.

What should we use for T? Most of space is converted
to the broken phase by bubbles which nucleate when
the critical bubble free energy reaches S = 100T [11].
We have computed 5 using our form for VT and the
techniques used in [6—8] and find, for instance, that for
AT = 0.03, A~ = 0, and 5 = 100T that T = 0.99980TO.
(Note that because of the B term, To is no longer the
spinodal temperature. )

Next, we must determine 6f, the deviation from
equilibrium in the presence of the moving wall. Our
starting point is the Boltzmann equation

each particle species in the plasma would be described
with a Boltzmann equation. We allow ourselves the
approximation that all species but top quarks and perhaps
W bosons are in equilibrium. This is reasonable as the
induced deviation from equilibrium goes as m, and top
quarks and W bosons are the heaviest particles. We also
use a single f for tops and antitops of both helicity. In
the minimal standard model this is reasonable as there is
almost no CP violation, and the difference in transport
properties arises only at the subleading level of weak
scatterings. For simplicity we will also neglect the change
in the background temperature due to the liberation of
latent heat. This approximation may be weaker [12,13],
but including this change would significantly complicate
our analysis. We intend to return to this problem in [14].

The Boltzmann equations are nonlinear partial integro-
differential relations and as such are analytically in-
tractable. To solve them we make the fiuid Ansatz
assuming f to be of the form

E —EAT/T —p, v —p,f ' = 1 + exp
T

where we have written explicitly three types of perturba-
tions: chemical potential p„ temperature 6T, and velocity
V. This Ansatz is a truncation of an expansion in pow-
ers of momentum; it gives a reasonable description of the
populations of thermal energy particles when the back-
ground varies slowly on the scale of the diffusion length.
For top quarks this should be sufficient as the diffusion
length is short and the inhuence of infrared particles is
phase space suppressed. For W bosons, Bose statistics
give large infrared particle populations, and the fiuid ap-
proximation is unreliable unless W bosons thermalize on
time scales short compared to their annihilation rate. We
consider the fiuid equations for W bosons as a guide for
their importance and concentrate on top quarks. We will,
furthermore, work to linear order in perturbations which
are of order (m/AT), and, therefore, naturally small.

With a three parameter Ansatz [6] we cannot ask that
the full Boltzmann equations be satisfied, but only impose
that three moments be satisfied, namely, the integrals
over jd p/(2n), fEd p/( n2), and f p, d p/(2') .
Working in the fiuid frame and using B,f(z + v t) =
v f', we obtain the following equations [15]:

/ f 3
v~c2p, + v~c36T + v +

3

v~c3p, + v~c46T + v +
3

v ci(mz)'
I ip, + I TiBT =

p 2T

v~cz(m )
2T (7)

where we have defined
3 3 3

I vT=0,

E' exp(E/T) ds p
[exp(E/T) -+ 1] (2') (8)

To lowest order in (m/T) they are ci = ln2/27r, c; = i!(1—2' ')g;/2~, where g, is the Riemann zeta function at i

778



VOLUME 75, NUMBER 5 PH YS ICAL REVIEW LETTERS 31 JUr v 1995

The I result from integrating over C[f] We compute
them in [14] to order n, Inn, Using n, = 0.12, we findI', = 0.010, I, = 0.019, I = 0.019, I = 0.082,
and I i = 0.042. The typical lifetime of a top quark be-
fore it annihilates against an antitop is —2cz/r~i = 16/T,
and the typical time before it has suffered enough
small angle collisions to randomize its direction is
—c4/3r = 9/T. For W bosons the I are about half as
large.

The terms on the right-hand side of (7), which drive the
plasma out of equilibrium, are proportional to m, so in
general 6f ~ I . Note that the friction term in Eq. (3) is
proportional to m Bf ~ m . For bosons the coefficients
in Eqs. (7) differ, and, in particular, ci ~ ln(2/m). The
integral in the equation of motion involving p, also contains
a log enhancement, but because m, /m is very large, W
bosons still produce less friction than top quarks.

With our Ansatz for f we can rewrite Eq. (3) for top
quarks (with g ~ 12) as

—(1 — ')y" + V'(y) + 12T
dP 2

= 0.
(9)

[F.q. (9)]y'dz = 0, [Eq. (9)]—@'dz = 0.

These equations have a simple physical interpretation. The
first equation is the total pressure on the wall in its rest
frame [6]; if it were nonzero, the wall would accelerate,
changing v . The second equation is the asymmetry in the
pressure between the front and back edges of the wall; if it
were nonzero, the wall would be compressed or stretched,
changing L.

The integrals for the first two terms in (9) are

[ @ + V'(p)]@' = VT(4'o) = VT(0) —= AVT, —

(12)

This equation and the Quid equations form a system of
nonlinear differential equations for the wall profile and
velocity. We will attempt to solve them in [14], but here
we will content ourselves with an Ansatz for P,

1 + tanh
4o z+v ti
2 L )

where Po is the value of @ in the asymmetric phase
and v the wall velocity and L the wall thickness in
the plasma frame are treated as undetermined parameters.
This Ansatz is chosen because the static equilibrium wall
shape in the one loop approximation is of this form.

Again, because we have restricted the form of P we
cannot ask that the full equations of motion be satisfied;
we can only enforce two moments. The natural choices are
the space integral of the equation of motion times 8 P/8 v
and BP/BL Note that. 8@/&v = tP' and BP/BL =

(x/L) @', so an—equivalent set of conditions is

1——[AVT + ~], (13)
2

:- = ~4o(k —1)T' +
2

SAT $o
24

(14)

Note that the P term acts to stretch the wall (increase L)
while VT acts to accelerate and compress the wall. The
coefficient 2.79 in the last term is the only place where
our choice for the function Pit enters our computation.

We will first get a rough estimate of the wall veloc-
ity and thickness by solving Eqs. (7) and (11), ignoring
transport, by which we mean we will ignore the derivative
terms on the left-hand side of the fluid equations. Trans-
port reduces friction because particles tend to Aow off the
wall, where they contribute less to Eq. (11). We will also
ignore 6T, which turns out to be a good approximation.
The expression for p, now becomes rather simple:

&welf( 4'0
(15)2I ~)T

Note that p, does not depend on other decay rates apart
from I

Using f(@P') = @o/IOL, fx(PP')2 = @o/24, and
(12)—(14) one can solve for L = L/(1 —v2)'~2 and
vw.

1
y v

5L I )AVT
2 46ci mq

1 FAVT +
@o 4

(19)

For m, = 174 GeV, AT = 0.03, and Ay = 0 these give
L = 29T ' and y v = 1.1, a mildly relativistic and
fairly thick wall. Note that L = 20T ' is much thicker
than the top quark diffusion constant D = 3T ', so the
quid approximation is in good shape.

Now we solve the problem including transport. First,
we must find the contributions to (11) involving p, and
6T. This is most easily accomplished by Fourier analysis.
Let us write Eqs. (7) in a matrix notation

A~'+ r~ = Fy@', (17)
where 8 is a column vector [p, 6 Tv T], A is the matrix
of coefficients for the derivative terms, I is a matrix of
the decay constants, and F is a column vector of the
coefficients for the force terms. Note that A is velocity
dependent, and F is linear in velocity. In Fourier space
(17) becomes

ik6 + A 'I 6 = A 'F@P', (18)
which may be solved by eigenvalue methods. Denoting
the eigenvalues and eigenvectors of A ' I as A; and s;
and expanding A 'F = n;g, , we find
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6y, T [ct p, (x) + c2BT(x)]$@'(x)dx, (21)

and (21) with an x/L inserted into k-space integrals using

f f/( x)f z( x)dx = yy/{ —k)fz(k) dk/27T and xf(x) ~
id f(k)/dk Thi.s yields integrals of the form

1 ( k L ) kLzr kL7rl dk1+ cschA+ik( 4 ) 2 2 / 27r

which may be converted to a rapidly converging infinite
sum by residue integration, or performed numerically.

This completes the evaluation of all terms in Eqs. (11).
These equations each define a curve in the space of v
and L. The intersection of these curves is a self-consistent
solution for the wall shape and velocity within the Ansatze
and approximations we have made.

We have solved these simultaneous conditions for some
representative values of AT and A~. We find that the fric-
tion from 6' bosons, calculated in the quid approximation,
is about half that from top quarks. Though our techniques
are different than those of [8], we get a similar numerical
value for the friction from W's. We have included them
in our analysis. We present the velocity and thickness of
the wall in Table I. Here mH is the physical Higgs mass
computed from the one loop relations in [7].

The last two rows are the velocity and thickness of
the wall when we treat v as a free parameter but fix
L to the value derived from (13) without the contribution
from friction. This value of I. is slightly less than the
thickness at phase equilibrium. We see that the wall is
significantly deformed by the effects of friction, and that
this increases its velocity. This is because the source for
6f, which goes as P@', peaks high on the wall, and
so does the sensitivity of the wall to Bf. Furthermore,
at large wall velocities, the particles are swept further
backward on the wall. Hence, most of the force from
Bf occurs near the back of the wall, stretching it out.
Of course, if the deformation is large then we have little
reason to believe that our wall shape Ansatg is accurate—

TABLE I. Wall velocity, etc. , at several effective potential
parameters.

AT

Ay
mH (GeV)
4o/T

LT
&no str

L„,„,.T

0.023
0

34
0.98
0.78

44
0.30

15.9

0.03
0

50
0.80
0.62

33
0.33

16.5

0.05
0

80
0.58
0.58

27
0.39

16.6

0.05
0.1

80
0.79
0.97

12
0.61
8.0

0.03
0.1

50
1.04

No solution
No solution

0.49'
9.7

gP' = (PD~/2) (I —
) ( ) csch( ~. (20)

This gives an explicit expression for p, and 6T.
Finally, we can convert the relevant integrals of the

friction term

one should model the shape more carefully than we have
done here. The conclusion that the wall is fast and thick
should be reliable, however.

When we include a sizable value of Ay, the parameter
describing nonperturbative symmetric phase effects, we
find no solution. The two Eqs. (11) turn out to be incom-
patible; the wall runs away, but maintains finite plasma
frame thickness. This result probably comes from ne-
glecting friction from the gauge condensate responsible
for Ay, which would compress the wall and prevent run-
away. To remedy this shortcoming we need a model for
the nonequilibrium dynamics of nonperturbative infrared
condens ates.

The situation in two doublet models may be quite
different from what we have found here. In these theories
there are several new massive (Higgs) bosons. The ones
which do not couple to the top quark have quite long half-
lives and sizable diffusion constants, and may be a major
source of friction.
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