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We obtain a lower bound for the mutual information of a quantum transmission channel, which is
perfectly analogous with Holevo's upper bound. The Uhlmann inequality for relative entropies is used,
in a reverted order, for a completely positive mapping related with the mixed coherent states introduced

by us seventeen years ago. Possible applications to quantum cryptography are discussed.
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In this paper we show that, as a manifestation of the
uncertainty principle, the possible amount of informa-
tion transfer via a quantum channel is bounded below
through an expression containing quantum entropies of
some quantum states associated to the quantum channel
[1—9]. The fact that the mutual information of a quan-
tum channel cannot be arbitrarily small is a completely
new result which reflects the quantum nature of the trans-
mission channel. This fact is important in the quantum
cryptography where the problem of the vanishing of the
mutual information is often considered (see example 1

given below). The lower bounds obtained until now are
only for the accessible information of a quantum chan-
nel. In example 2 given below a quantum system is found
where the mutual information happens to be equal with
the subentropy [4] (and hence with the accessible infor-
mation) which gives a lower bound for the accessible in-

formation. Only for this particular case is the subentropy
bigger than our lower bound.

Twenty years ago, Holevo [1] obtained the first result
of this kind: an upper bound for the mutual information
of a quantum channel. Recently, Yuen and Ozawa [2]
generalized Holevo's result for quantum channels with
input and output alphabets described by any measure
space.

Let (X, X, m) be a measure space [3] which describes
the input alphabet and (Y, ~, p, ) a measure space which
describes the output alphabet. For simplicity we shall
suppose that X and F are compact spaces.

We stipulate [4—6] the a priori probability density

p;(x) standing for the initial information available about
the symbol x. The Shannon information for the input
alphabet is [4—6]

p;(x) lnp;(x) dm(x).

p(x~y) 1np(x~y) dm(x). (3)

The information gain for the outcome y is thus [5]

~1(y) = If(y) —I, .

The expected information gain is then given by

(AI) = p(y, x) ln
'

dp, (y) dm(x).p(y, x)
x r pf y ptx

(4)

(5)

When the input symbol x E X is transmitted, the
output symbol y H Y is registered with the (conditional)
probability p(y~x). This conditional probability is central
to the study of information transmission and characterizes
the transmission channel.

To obtain the a posteriori probability pf (y) we employ
the Bayes rule [4—6]

p(xly) pf(y) = p(x, y) = p(y, x) = p(ylx) p;(x), (2)

where p(x, y) = p(y, x) is the joint probability distribu-
tion for the input and output alphabets. The final infor-
mation is given by [5]
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p;(x) S(p, ) dm(x) .
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(16

~(p(. ly)l p ) = p(xly)
d ( )p(x~y) ln m

+(b) (x) = Tr(bp. ) (17)

i.e.,

(AI) = 5(p(. ix)i pf) p;(x) dm x

5'( p(. Iy) I p;) pf (y) d p y h(x) px dm(x). (18)
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Example I: In this case the initial states (Igk), k E X)
are orthogonal states which give an orthogonal decompo-
sition of the unit operator I on H:

k k
= I, (25)

k=1

where n = dimH and

[6] by
n

j=1

+ g I Tr[A(j ) p~] ln Tr[A(j) p~] dm(P) .

(33)
n

p = P p (k)IA)&AI
k=1

(26)

5(p) = —g p; (k) lnp; (k) .
k=1

(27)

So f p;(k); k = 1, . . . , n) are the eigenvalues of the density
operator p and

Because Tr[A( j) p~] and pf(j) = Tr[A( j)p] are,
respectively, the contravariant and the covariant sym-
bols of A( j) and p [12), we have from Theorem 3
of [12] that S(p) ~ —p"

& pf(j) lnpf(j) = ln(n)
and 5(o—.~) ~ fx Tr[A( j) p~] ln Tr[A(j) p~] dm(P) =
—(1/n) [2 + . + (1/n)]. Hence

Also we have

and

n

~ = P p(klan) IA)(AI
k=1

1 1 I

(AI) = ln(n) — —+ . + —
I

~ 5(p)
2 n)

n

—P pf ( j) S(o-, ) .
j=l

n

5(o;) = —g p(kI j) lnp(kI j) .
k=1

(29)

(34)

But using the concept of subentropy Q(p) defined in [4]
we can rewrite this result in the following form:

Hence the equality is attained in (24) and in this case
n

(~&) = 5(p) —P pf(I) 5(og).
J= 1

(3o)

pp dm(P) = I (32)

is satisfied [11,12]. Let (P~, . . . , P„) be a basis
in H and A(j ) =

I QJ) (pf I
the corresponding

positive operator valued measure (POM). Then

p(j Ip) = I(@JI p)I . Let us suppose that p;(r/i) = 1/n.
Then p(j, P) = p(j IP)/n = p(P,j), pf(j) = 1/n,
and p(QIj) = p( jIQ). The density operator
o~ = fx Tr[A( j)p~] p~ dm(p) is called in [6] the
unique density operator estimator assigned to @I (we take
N from [6] equal to 1). The mutual information is given

The vanishing of this lower bound is obtained when

pf(j ) = 1/n and 5(o ) = 5(p), for any j = 1, . . . , n

In this situation we also have p(kI j) = p( jIk) = 1/n,
i.e., the bases 1I pq)) and iI uI)) are conjugated [16]
or mutually unbiased [17]. The corresponding density
operators are given by p = I/n and o.j = I/n

Example 2: Another very interesting example is that
given by the following situation: The Hilbert space H
is a finite dimensional space with dimH = n and X
is the homogeneous manifold U(n)/U(n —1) with the
unique invariant measure dm induced by the unique Haar
measure on SU(n) [6]. We denote the element x E X by
the corresponding element IP) C H. We shall take

(31)

and the condition

(~1) = Q(p) —5(p) —y pf(j) 5(,), (35)
j=l

i.e., our lower bound is smaller than the subentropy Q(p)
which gives a lower bound for the accessible information
defined as the maximum of the mutual information over
all POMs [4]. The result is valid only for this example
in which the mutual information happens to be equal with
the subentropy.

Finally, we shall illustrate how the above estimation
can be useful in quantum cryptography. The quantum
channels with zero mutual information are considered
in connection with the problem of optimal security.
But the vanishing of the lower bound is a necessary
condition for the vanishing of the mutual information.
The lower bound is equal to the difference between the
entropy of a convex combination of states and the same
convex combination of the entropies of these states. This
difference vanishes only in the case when the density
operators describing these states are the same [18]. Hence
the lower bound is equal to zero only when p;(x) =
p(xIy). Then p(yIx) = pf(y) and p(x, y) = p(y, x) =
p;(x) pf(y), i.e. , the variables x and y are independent
and (AI) = 0. Conversely, from the vanishing of the
mutual information it follows that the variables x and y
are independent, and then relation p(xIy) = p;(x) holds.
A particular solution of these equations was given in
example 1. In general, these conditions are very effective
and bring a new light to the problem of the vanishing
of the mutual information. Indeed, an eavesdropper may
cause the vanishing of the mutual information Aow, in
spite of the fact that the lower bound is not equal to zero,
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and exactly this disturbance allows the detection of the
presence of this unauthorized user.
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