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Finite-Amplitude Waves at the Interface between Fluids with Different Viscosity:
Theory and Experiments
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The interfacial instability caused by viscosity stratification of a density-matched two-layer, rotating
Couette How is examined close to criticality. Weakly nonlinear analysis of the full governing equations
indicates that the instability is supercritical, and measurements of amplitudes for steady, traveling
periodic waves agree well with the theoretical predictions.

PACS numbers: 47.20.Ma, 47.15.Fe, 47.20.Ky, 47.55.Hd

Flowing interfaces of stratified, immiscible fluids are
common in our environment (e.g. , wind-water) and in
many kinds of industrial process equipment (e.g. , con-
densers and oil transport pipelines). For this reason they
have been the object of numerous studies both theoreti-
cally and experimentally [1]. Linear stability analyses
predict that two-layer channel flows can be unstable to
either long [2], moderate [3], or short [4] traveling waves.
While the presence of six governing parameters prevents
exhaustive studies, numerical techniques for the linearized
problem have been developed to allow examination of all
parameter and wave-number ranges [5—7]. Studies that
examine weakly nonlinear evolution of the disturbances
are relatively few in contrast. In the long-wave case it
has been shown [8] that the evolution can be described
by a Kuramoto-Sivashinsky equation, known to give rise
to very rich dynamical behavior involving localized pat-
terns. When the critical wave number is instead bounded
away from zero, the classical bifurcation analysis yielding
the Stuart-Landau or Ginzburg-Landau equation has been
applied [9—11].

Experiments in gas-liquid systems show that interfa-
cial waves can remain nearly periodic and small ampli-
tude [12],evolve into roll waves [13],solitary waves [14],
or slugs. However, it is difficult to find in the literature
careful experiments that could be used to verify the quan-
titative predictions of both linear and nonlinear stability
analyses. The presence of turbulence in the gas for gas-
liquid systems prevents a direct application of rigorous
analysis [12]. Even when the flow is laminar in both fluids,
the common use of open flow systems poses additional dif-
ficulties. The usually convective nature of the instability
results in "noise-sustained structures" [15] which evolve
spatially [16]. The finite length of the apparatus in this
case is a serious limit to the extent to which the evolution
of the slowly growing disturbances close to neutral stability
can be observed. The emerging patterns are not in general
periodic in space, so that measurement of the amplitude in
different locations is needed.

In this Letter we report on a novel experimental
apparatus that reduces the uncertainty due to the above
factors and allows direct comparison with theoretical

predictions. This is achieved by a design that features the
co-current flow of stratified fluids in a closed system. As a
result, the wave patterns reach equilibrium amplitudes and
can be observed in the system by waiting the appropriate
amount of time. In addition, the flow is spatially periodic
in nature, which allows a straightforward comparison with
weakly nonlinear theory.

Two density-matched immiscible fluids are confined
between concentric cylinders that are mounted on a
Weissenberg rheogoniometer with the axis in the vertical
direction (see Fig. 1). The diameters of inner and outer
cylinders are 19.5 and 21.5 cm, respectively, with a
resulting radial gap of 1 cm. The two Newtonian fluids
used for the experiments reported here are Dow 710 (the
outer fluid), which is a phenilmethyl polysiloxane, and
a mixture of ethylene glycol, water, and Coffeemate-
a commercial nondairy creamer that is used as a source
of refractive particles. The viscosity and density of Dow
710 are 0.555 Ns/m and 1110kg/m, respectively; the
viscosity and density of the ethylene glycol solution
are about 0.011 Ns/m and 1108 kg/m, respectively,
while the surface tension between the two fluids is about
0.01 N/m. A vertical interface is formed by filling the
device with the inner fluid and starting rotation. The
Dow 710 is loaded on the rotating outer wall, and it
displaces the glycol solution because it preferentially wets
the outer cylinder. The process is aided by the slight
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FIG. 1. The experimental apparatus and the horizontal laser
setup.
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density mismatch and by wiping the outer cylinder with
710 before it is loaded with the inner fIuid. The bottom
boundary is a layer of mercury that remains flat, and the

top boundary is air. This limits the amount of shear in

the vertical planes. As a result, when the outer cylinder
is set in rotation with the inner cylinder kept fixed,
a two-dimensional shear flow (in the horizontal plane)
develops in the median section of the cell. This is the
main advantage of our configuration over similar ones
[17] where the interface is horizontal and in which the
developed How is likely to be fully three dimensional.

The position and shape of the interface are monitored

by viewing through the transparent outer cylinder. Sev-
eral lighting techniques are used for this purpose. Diffuse
white light allows for a global picture of the How field
while vertical and horizontal He-Ne laser sheets are used
for quantitative measurements of the interface position.
In the vertical setup a plane of laser light is projected
onto the interface at a large incidence angle. Laser light
is visible at the surface of the outer cylinder and at the
Quid-quid interface. The distance between the two laser
images is proportional to the quid depth ratio. This image
of the interface allows measurement of its vertical profile.
The horizontal laser setup, shown in Fig. 1, is designed to
detect the interface profile in the azimuthal direction at a
fixed vertical position. The setup is calibrated by imaging
a curved grid of known spacing. When the How is stable,
the interface is flat. When the instability sets in, this setup
allows quantitative measurement of the waves developing
in the azimuthal direction.

The ratio between the gap and the cylinder radii is
about I/10. This, together with the measured invariance
of the interface in the vertical direction, allows modeling
the system as a two-dimensional planar flow. The govern-
ing equations are the full Navier-Stokes equations in each
phase coupled by continuity of velocity, normal and tan-

gential stress balances, and the kinematic boundary condi-
tion at the unknown radial position of the interface. The
standard domain perturbation technique is used to derive
a weakly nonlinear version of the governing equation in
terms of the deviation variables from the plane Couette
base state. Nonlinearities up to cubic order are retained
in the expansion. The resulting equations are equivalent
to the ones used in Refs. [9,11]. A Chebyshev-tau spec-
tral method is used to discretize the system of equations
for numerical computations.

The eigenvalue problem governing the linear stability
of the base state was solved numerically and with the
long-wave analysis of [2] to determine onset conditions
for the interfacial mode, the only one that can become un-

stable at low quid velocities. When the physical charac-
teristics of the fluids and the gap width are fixed, there are
only two parameters that can be varied independently: the
outer velocity U and the ratio of the fIuid depths, quan-
tified by the depth h of the less viscous Quid. The onset
conditions in this parameter space for typical values of the
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FIG. 2. Typical linear stability results for parameters corre-
sponding to our experiment. The dashed line is the onset
boundary for the short-wave instability. In the left inset the
interfacial growth rate as the boundary is crossed is shown. In
the right inset the interfacial growth rate in the long-wave in-
stability region to the right of the solid line (h = h*) is shown.

physical properties used in the experiments are shown in
Fig. 2. When the less viscous Quid is sufficiently thin,
the system is stable to long waves (a typical behavior for
stratified flows) but can be unstable to short waves. In
this region of short-wave instability there exists a criti-
cal value of rotation rate below which the Couette How is
stable and above which waves can be observed. A typical
growth rate for the interfacial mode at criticality in this
region is shown in the left inset. As the inner film thick-
ness is increased, the critical wave number decreases, and
reaches a vanishing value at a critical depth h". Beyond
this point the instability is long wavelength in nature, and
there is no critical rotation rate. The system is always
unstable when the fluids are sheared, and the qualitative
shape of the growth rate, shown in the right inset, is com-
mon to other long-wavelength instabilities such as the one
exhibited by vertically falling films.

As the rotation speed is increased from the onset value,
waves are predicted to grow in the system. The expected
behavior is different for the short-wave case compared to
the long-wave case. For the former, a small band of wave
numbers bounded away from zero becomes unstable, and
the disturbance wave number, at least close to criticality,
is expected to be close to the critical one. In the second
case, a band of wave numbers from zero to a cutoff value
is unstable. The number of modes relevant to the non-
linear evolution is much larger in this case. In particu-
lar, the subharmonic instability is expected to appear in
this system [18], and it is difficult to predict the selected
wave number. A paradigm of this kind of system is the
Kuramoto-Sivashinsky equation, in which chaotic dynam-
ics involving localized solitary waves are observed.

The stability boundaries of the system are mapped
experimentally by increasing the rotation rate of the outer
cylinder until waves are detected. The observed behavior
is consistent with the above theoretical results. In the
short-wave region, periodic waves are first observed for
conditions above the predicted onset with wave numbers
belonging to the predicted range of unstable values.
An example of the predicted neutral curve (solid line)

78



VOLUME 75, NUMBER 1 PH YS ICAL REVIEW LETTERS 3 Jvrv 1995

0.40—

0.35—

0.30—
tlJ

0.25—

0.20—

0.15—

0.10 +
0 5 10 15 20

I I

30x10

FIG. 3. The neutral curve predicted by linear stability (solid
line) and the measured wavelengths for increasing plate
speed. The inner film height and viscosity are 0.17 cm
and 0.0115 Ns/m, respectively. The dotted line (maximum
growing wave number) and the dashed line are the ones used in
the computation of the amplitude values plotted with the same
line type in Fig. 4.

p =Av+Av+ P, (1)
h

where v is the fundamental eigenfunction, P is a linear
combination of the others, and the overbar denotes a com-
plex conjugate. Center-unstable manifold theory allows
leading order expression for the modes P which are
stable at criticality as a function of the fundamental one.
The result is the Stuart-Landau equation for the amplitude
of the fundamental mode close to neutral stability

A = rTA + 1~)A( A, (2)

where ~ is the Landau constant; its sign determines the
nature of the instability. The computation of ~, although
straightforward in principle, is rather involved due to
the complexity of the governing equations and boundary
conditions. The details are omitted here for brevity and

compared to the observed wavelengths in this region is
shown in Fig. 3. For depth ratios larger than the critical
value, for which the predicted instability is of the long-
wave variety, the observed periodic waves usually have
wave numbers significantly lower than the maximum
growing value. In some cases, the resulting waves have
wavelength equal to the whole circumference and are very
localized in nature.

The periodic nature of the waves observed in the region
of short-wave instability warrants direct comparison with
weakly nonlinear solutions obtained by bifurcation analy-
sis of the governing equations. The deviation variables
(velocity u, pressure p, and interface position h) close to
criticality are expanded in series of the eigenfunctions of
the linear problem:

the reader is referred to the papers by Renardy [10] and
Blennerhassett [9] for similar formulations.

A couple of points deserve mention to illustrate the rea-
sons why our setup is particularly appropriate for compar-
ing nonlinear theory prediction and experiments. First, in
the computation of two-dimensional finite-amplitude solu-
tion for parallel flows, an additional longitudinal bound-
ary condition is needed to determine the solution. This is
usually set to keep constant either the average How rate or
alternatively the average pressure drop. The difference be-
tween the formulations is evident even in plane Poiseuille
liow [19]. In that case the resulting finite-amplitude so-
lutions are found to be different depending on the chosen
boundary condition, and to have different stability charac-
ter [20]. In fact, a whole family of boundary conditions
is possible, and therefore a family of solutions exists, as
exploited by Barkley [21]. The same behavior is pres-
ent for two-phase parallel flows and the corresponding
analysis has revealed dramatic differences including the
bifurcation switch from subcritical to supercritical [11],
depending upon the selected condition. To compare with
experiments, it is critical to know the correct boundary con-
dition. Unfortunately, in an open flow system this can vary
dramatically for different setups, and depend on the details
of the sections of the apparatus preceding and following the
one where the stratified How is established. Most likely,
the corresponding boundary condition will be somewhere
between the two limiting cases and may not be easily de-
terminable. In our experiment the closed and periodic na-
ture of the How dictates the absence of average pressure
gradient in the azimuthal direction and therefore leaves no
ambiguity as to the correct boundary condition. A fur-
ther complication arises because of the presence of the in-
terface between the two fluids. In addition to the critical
eigenvalue at finite wave number, the interfacial mode is
always neutrally stable for zero wave number. As a re-
sult, it is possible to excite an average shift of the inter-
face, which will in turn modify the value of the Landau
constant l~ in Eq. (2) and consequently the equilibrium
amplitude. This accounts for the difference between the
finite-amplitude solutions studied in Ref. [11]and the ones
studied in Ref. [9]. In an experiment carried out in an open
fIow system, the possibility of having a different average
film height at different locations of the channel could make
comparison with the theory difficult. The behavior in those
systems has to be tackled by using coupled amplitude equa-
tions for the fundamental mode A and this second neutral
mode B, as proposed in Ref. [11]. In the setup described
in this Letter, the relative quantities of Auids are fixed and
therefore the spatially averaged film height must remain
constant. In other words, the amplitude 8 of the inter-
facial mode with zero wave number is always identically
zero. In summary, in our system the Landau constant is
uniquely determined by the fact that pressure gradient and
average film height are fixed. When evaluated at critical-
ity it is equivalent to the constant P in Ref. [11].
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FIG. 4. The predicted and measured amplitudes for increasing
(open circles) and decreasing (full circles) plate speed for the
conditions shown in Fig. 3. The predicted curves are computed
using as fundamental wave number the ones shown with the
same line type in Fig. 3.

A code was written to compute the value of the
constant sc. Its validity was checked by reproducing the
numerical results reported for the Couette flow in [9,11].
In the region of short-wave instability, the code was used
to test the nature of the bifurcation, which was found
to be always supercritical. Furthermore, the dominant
interaction that leads to saturation of the unstable mode
is a quadratic interaction with the first overtone.

Comparison of measured and predicted wave ampli-
tudes for a specific inner Iluid depth (h = 0.17 cm) as
the rotation rate is increased is shown in Fig. 4. The
agreement is within experimental error and can be consid-
ered satisfactory. In particular, the predicted supercriti-
cal nature of the bifurcation was verified by measuring
amplitudes for increasing (open circles in Fig. 4) and de-
creasing (full circles) the rotation rate. The absence of
hysteresis expected in a supercritical bifurcation is evi-
dent in the data. Figure 5 shows an experimental wave
profile detected with the horizontal laser setup compared
to the corresponding one constructed as a finite-amplitude
superposition of the fundamental eigenfunction, the mean
flow, and the first harmonic. The amplitudes and relative
phase differences of the above components are part of the
information obtained by bifurcation analysis. Although
only two harmonics are present in the reconstructed inter-
facial shape, their sum captures remarkably well the main
features of the observed wave profile.

The success of these comparisons between theory and
experiments for periodic wave patterns provides a basis
for understanding more complex nonperiodic solutions
that occur close to criticality in open fiow experiments.
In addition, the observed presence of localized interfacial
structures when the instability is of the long-wave variety
opens the possibility of a very careful study of these wave
patterns common to many interfacial systems with similar
growth rates. Again the advantage of having a closed
system in which to observe the long-time evolution of
these structures is extremely important.
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FIG. 5. The predicted (below) and measured interfacial shape.
Viscosity and thickness of the inner fiuid (above the interface
in the figures) are 0.0115 N s/m~ and 0.24 cm, respectively,
while the outer plate speed is 29.5 cm/s.
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