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Neutron Diffraction from Shear Ordered Colloidal Dispersions
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Small-angle neutron scattering patterns from shear ordered colloidal dispersions are discussed in
terms of the scattering power distribution I(1) along Bragg rods of hexagonal layers. The orientation
dependence of the neutron scattering pattern is directly related to I(1). Its experimental determination
provides information on the structure and on stacking faults in such systems. Experimental data of
Laun et al. [J. Rheol. 36, 743 (1992)] are discussed, and it is found that the system considered is close
to random close-packed hexagonal layers.

PACS numbers: 82.70.Dd, 61.12.Bt

The equilibrium phase behavior of charge stabilized
colloidal dispersions has been investigated as a function
of particle concentration and ionic strength [1] by syn-
chrotron x-ray diffraction [2], by light scattering Kossel
lines [3], and by computer simulation [4]. There is agree-
ment that at high particle concentration and low ionic
strength the equilibrium structure is fcc (or a glass) in the
bulk phase.

Small-angle neutron scattering experiments have also
been performed with charge stabilized dispersions at high
volume fraction and low ionic strength by several groups.
Sharp diffraction peaks of hexagonal arrangement have
been obtained for samples subjected to shear either at
low rates or after turning the shear off [5—8]. Since the
equilibrium structure under these conditions is fcc, the
observed neutron diffraction pattern has been interpreted
as resulting from fcc [5,6]. Recently, however, this
interpretation has been criticized and an interpretation
in terms of completely uncorrelated hexagonal layers
was presented [9]. In this Letter we want to extend
our previous arguments and show that conceptually it is
advantageous to start from uncorrelated hexagonal layers
as the basic structure element. Additional ordering such
as close packing and different stacking sequences leads to
a redistribution of the intensity along the Bragg rods in
reciprocal space, which can be studied uniquely by small-
angle neutron scattering. We recall that light scattering
powder diffraction patterns from hard sphere colloidal
systems have also been interpreted along these lines [10].

The reciprocal space of a hexagonal layer is a system of
hexagonally arranged Bragg rods [11]with a rod spacing
in reciprocal space of a" = 4~/a~3, where a is the
lattice constant of the original lattice. Figure 1 shows a
system of Bragg rods (h, k). For laterally uncorrelated
layers the intensity is uniformly distributed along the rods.
Also included in Fig. 1 is the intensity distribution on
the rods for perfect ABCABC. . . stacking of the layers.
In this case the original lattice is fcc and the reciprocal
lattice bcc. On the Bragg rods the intensity degenerates to
points (h, k, l). With a spacing between two close-packed
layers c = a~2/~3, we have c' = 27r/c There are two.

types of Bragg rods [11]. If (h —k) = 3n, where n is
an integer, reciprocal lattice points occur on the rods at
integral values of l. This does not only hold for fcc but
also for all other stacking sequences, as long as the layers
are snapped in A, B, or C positions. In Fig. 1 the central
rod and the six outermost rods are of this type and the
corresponding intensity nodes are shown. On the other
hand, if (h —k) = 3n ~ I, intensity nodes occur for fcc

1 1
alternatively at I + 3 or l —

3 with 3 integral. In Fig. 1

the inner ring with six Bragg rods is of this type. Again
the reciprocal lattice points are included. As a guide to
the eye a reciprocal bcc unit cell is also shown. For hcp,
ABAB. . . stacking, on each of the latter rods intensity is
found at integer l and at l + 2 with an intensity ratio of
1:3 [11].

Stacking sequences other than ABCABC. . . and
ABAB. . . may occur. For such cases the probability
P„, that two layers separated by I . c are identical can
be introduced [11]. For the (h —k) = 3n rods the
scattering power I(l) along the rods remains distributed,
as discussed above, as long as the layers are snapped in

FIG. 1. Bragg rods corresponding to hexagonal layers. For
ABC. . . close-packed layers (fcc) the reciprocal lattice is bcc.
The corresponding intensity nodes on the rods and a bcc unit
cell are included.
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I(l) exp( —2gr iIm) dl.

Thus, the intensity distribution along the two types of rods
can provide two distinct pieces of information. First, the
distribution along the (h —k) = 3n rods allows us to
estimate to which extent the layers are locked in close-
packing positions with respect to each other. Second,
experimental measurements of I(l) along the (h —k) =
3n ~ 1 rods provide information on the stacking se-
quence probability P

Next, we discuss how the scattering power 1(l) along
the rods can be determined by small-angle neutron scatter-
ing. Figure 3(a) shows a view from the top on the Bragg
rods shown in Fig. 1. Values for the indices (h, k) of the
hexagonal arrangement are included. A rotation by 90
about the (2, 1)-(0,0)-(2, 1) axis brings the Bragg rods in
a position parallel to the drawing plane. This is shown in
Fig. 3(b) for l ranging from —1 to +1. In this projection
all (h, k, I) rods with fixed index h are projected on top

A, 8, or C positions. For the (h —k) = 3n ~ 1 rods,
the intensity distribution depends on the stacking proba-
bilities P . Three examples of I(l) calculated according
to Ref. [11] are shown in Fig. 2, which correspond to
twinned fcc with stacking faults (bottom), to close-packed
random stacking (middle), and to hcp with stacking faults
(top panel). It is interesting to note that the probabilities
P are related to the scattering power I(l) along the rods
by [11]

(a) Ic)

02

fcc

of each other. It is therefore not possible to distinguish
between the (h —k) = 3n and the (h —k) = 3n ~ 1

rods in this projection. Arbitrarily, to the right-hand side
of the (O, k, l) rods two (h —k) = 3n rods are shown.
The indicated nodes correspond to perfectly close-packed
hexagonal layers. To the left of the (O, k, l) rods two
(h —k) = 3n ~ 1 rods are drawn. On these rods the in-
tensity distribution for random close packing (Fig. 2, mid-
dle panel) is shown.

A second projection of the Bragg rods is obtained
if Fig. 3(a) is rotated by 90' about the (0,1)-(0,0)-(0, 1)
axis. The resulting top view on the Bragg rods is
depicted in Fig. 3(c). This time the (h —k) = 3n and
the (h —k) = 3n ~ 1 rods are separated. The intensity
distribution on the (h —k) = 3n rods is chosen as before.
For the (h —k) = 3n ~ 1 rods in the lower half of
Fig. 3(c) the intensity distribution I(l) corresponding to
random close packing and in the upper half I(l) for
twinned fcc with faults is shown.

With a neutron wavelength A = 10.0 X 10 ' m and
a lattice constant of a = 1 X 10 m, the radius of the
Ewald sphere 2mr A is about 3 orders of magnitude larger
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FIG. 2. Scattering power distribution I(l) along the rods
(h —k) = 3n ~ 1 rods for fcc with stacking faults (bottom),
random packing (middle), and hcp with stacking faults (top
panel).

(b)

FIG. 3. (a) Top view on an indexed hexagonal layer. (b)
Layer in (a) rotated by 90' about the (2, l)-(0, 0)-(2, 1) axis.
Right-hand side: intensity distribution I(l) along (h —k) = 3n
rods for close-packed systems. Left-hand side: I(l) along the
(h —k) = 3n ~ 1 rods for random close packing. (c) Layer
in (a) rotated by 90' about the (0,1)-(0,0)-(0, 1) axis. 1(l) for
(h —k) = 3n rods as in (b). (h —k) = 3n ~ 1 rods: I(l) for
faulted fcc is shown in the upper part and I(l) for random close
packing in the lower part.
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than the Qqqt distances in the reciprocal lattice, i.e. , on
the scale of the reciprocal lattice the Ewald sphere is a
plane. For a neutron beam at normal incidence to the
hexagonal layers the Ewald plane appears as a line at
l = 0 in the two projections, Fig. 3(b) and 3(c). From
the upper part of Fig. 3(c) it is obvious that for fcc only
the (h —k) = 3n rods have intensity nodes in the Ewald
plane at normal incidence.

Hexagonal neutron diffraction pattern from colloidal
dispersions have been obtained by several groups for
dispersions under sheared conditions at low shear rate
or after the shear was turned off [5—7]. We consider
data published by Laun et al. [7]. Typical diffraction
patterns, redrawn after Fig. 21 of Ref. [7], are shown
in Figs. 4(a) —4(c). The data were obtained at a wall
shear rate 10 s ' in a plane Poiseuille cell with fIow
in the (2, 1)-(0,0)-(2, 1) direction (particle diameter cr =
165 nm, solid content 52.3 vol%, dispersed in glycol).
These scattering distributions are of particular interest
because they were obtained at various orientations of the
cell with respect to the neutron beam. To the best of our
knowledge the orientation dependence of the scattering
distributions has not been accounted for so far.

The diffraction pattern in Fig. 4(a), which was obtained
with the neutron beam perpendicular to the layers, shows
intensity not only on the (h —k) = 3n rods (1,1), (2, 1),
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FIG. 4. Small-angle neutron scattering pattern from a charge
stabilized dispersion Ilowing in the (2, 1)-(0,0)-(2, 1) direction
with a wall shear rate of 10 4 s ', redrawn after Ref. [7],
Fig. 21. Indexing is as in Fig. 3(a). (a) Neutron beam at
normal incidence on the layers. (b) Sample rotated by 30,
and (c) sample rotated by 45 about the vertical (0, 1)-(0,0)-
(0, 1) axis. (d) Sample rotated by 22.5 about the horizontal
(2, 1)-(0,0)-(2, 1) axis.

(1, 2), (1, I), (2, 1), and (1,2) but also on the (h —k) =
3n ~ 1 rods (0, 1), (1,0), (1, 1), (0, 1), (1, 0), and (1, 1).
Thus, according to the discussion above [Fig. 3(c) upper
part], this structure is not fcc as claimed previously [5,6].
However, for hcp as well as for random packed layers the
intensity on the (h —k) = 3n ~ 1 rods does not vanish
in the Ewald plane (line at l = 0). Thus, these structures
as well as laterally uncorrelated layers are in agreement
with the scattering distribution in Fig. 4(a).

Further information concerning the intensity distribu-
tion on the Bragg rods can be obtained from the orien-
tation dependence of the scattering pattern. Figures 4(b)
and 4(c) show how the intensity distribution changes as
the cell is rotated about the vertical (0,1)-(0,0)-(0, I) axis
by 30' and by 45, respectively. Such a rotation causes
the Ewald plane to rotate in the reciprocal lattice, as in-
dicated in Fig. 3(b), by the two rotated lines (projections
of the Ewald plane). The Ewald plane now intersects the
rods at different l values, i.e., changing the orientation
of the sample allows one to scan the intensity along the
Bragg rods.

Let us consider the (h —k) = 3n rods shown on the
right-hand side of Fig. 3(b) first. For a rotation by 30
the Ewald plane intersects the rods (1,1), (1, 2), and

(1, I), (1,2) at l = ~ z, where for close-packed hexagonal
planes the intensity should be zero. In fact, a strong
decrease of the intensity is observed in Fig. 4(b) for
these rejections. Further rotation to 45 brings the Ewald
plane closer to the next nodes (l = ~l) on these rods
and, accordingly, a slight increase of the intensity is
visible in Fig. 4(c). Further, the position of the Bragg
peaks as a function of the sample orientation can be
understood. Peaks on the (0, 1)-(0,0)-(0, 1) rotation axis
are independent of the sample orientation because the
Ewald plane intersects these rods at l = 0. For rods not
intersecting the rotation axis the intensity "moves away"
from the rotation axis as the sample is rotated. The
distance d of a (h, k) reflection from the rotation axis is
d*(0) = ~3a*ihi/2 cos(0), where 0 is the rotation angle.
For example, the reflections (2, 1) and (2, 1), which are
visible in Fig. 4(a), are moved outward in Fig. 4(b) and
are no longer visible in Fig. 4(c); similarly, the reflections
(1,1) and (1, 2) drift apart with rotation angle.

Next, the (h —It) = 3n ~ 1 rods are considered. Ro-
tation of the cell by 30 has two effects for the rods not
intersecting the rotation axis: (1, 1), (1,0) and (1,0), (1, I).
They move apart as discussed before and gain some-
what in intensity. Since the Ewald plane intersects the

Bragg rods at l = ~ 2, the intensity distribution for ran-

dom close packing with its maxima at l = ~
& [shown on

the left-hand side of Fig. 3(b)] is favored by this' finding.
According to Fig. 4(c) further rotation of the cell to 45'
leads to a total vanishing of the latter spots. As the in-
tersection of the Ewald plane with the (1,k)-Bragg rods
in Fig. 3(b) shows, the intensity should not vanish com-
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pletely for random packing. This could be an indication
that the stacking order may be closer to hcp with stacking
faults, for which, according to Fig. 2, upper panel, a min-
imum of I(l) occurs in this l range.

The scattering pattern shown in Fig. 4(d) was ob-
tained after rotating the cell from the normal position
about the horizontal (2, 1)-(0,0)-(2, 1) axis by 22.5'. The
intersections of the Bragg rods by the rotated Ewald
plane are shown in Fig. 3(c). First, the intensity of the
(h —k) = 3n nodes on the rotation axis (2, 1) and (2, 1)
neither move nor change their intensity. By contrast, the
(h —k) = 3n nodes not on the rotation axis [(1,1), (1,2),
and (1,2), (1, 1)] drastically lose intensity, in agreement
with the fact that the Ewald plane intersects the corre-

1
sponding Bragg rods at t = 2. Second, concerning the
(h —ic) = 3n ~ 1 rods the intensity of the reflections
(1,0), (1, 1) and (1, 1), (1,0) changes little as compared
with the one in Fig. 4(a), whereas the rellections (0,1) and

(0, 1) have gained intensity. The intensity distribution for
random packing shown in the lower part of Fig. 3(c) per-
fectly accounts for this behavior. The Ewald sphere in-
tersects the (1, 1), (1,0) and symmetrically the (1,0), (1, 1)
rods in a region in which I(l) is still close to its value at
l = 0. The intersection of the (0,1), (0, 1) rods, on the

i
other hand, occurs closer to the maxima at l = ~

2 of the
I(l) distribution. The slight shift of the peaks also per-
fectly fits into the Bragg rod picture.

For rotations of the sample about the vertical axis the
rotation angle 0 is related to the I value at which a
(h, lc) rod is intersected by the Ewald plane by tan(0 ) =
(3/2)'I I/h. In order to distinguish between the differ-
ent possible stacking sequences intensity measurements

1 1 2
at l = 0, 3 2 3 and l would be of particular inter-
est. For the (1,0) rod the corresponding sample orienta-
tions are 0 = 0, 22.2', 31.48, 39.32', and 50.77 . Un-
fortunately, measurements at these angles are not avail-
able. For rotations about the horizontal axis the relation
tan(Oh) = (3/~2)l/s holds, where s is the rod index cor-
responding to the projection shown in Fig. 3(c).

In conclusion, we have shown that for a shear ordered
system at low shear rate the neutron scattering distribution
and its orientation dependence can be accounted for qual-
itatively in terms of the intensity distribution I(l) along
the Bragg rods. The structure of the system considered
is close to random close-packed hexagonal layers. The
method of analysis appears suited to study the structure
of sheared samples and the kinetics of recrystallization
quantitatively. Such investigations require a continuous
variation of the sample orientation which does not seem
to be available at the moment.
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