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Tracer Diffusion in a Brownian Fluid Permeating a Porous Medium
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Tracer diffusion in a colloidal suspension permeating a porous medium is modeled as a binary
Brownian mixture in which the spatial configuration of one of the species (the porous matrix) is frozen.
Brownian dynamics simulations are employed to assess the accuracy of two simple theoretical results
borrowed from the theory of colloid dynamics. The theoretical predictions are found to be reasonably
accurate for not too low porosities, i.e., when strong confinement or trapping of tracer particles is not
the dominant feature.
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Recently there has been an increased interest in the study
of porous structures [1—8]. Describing their structure and
morphology [1,3], as well as the equilibrium [4,5] and
transport [6—8] properties of fluids that permeate them, are
a few of the issues involved in their study. In recent years,
physical techniques, both experimental [1,6] and theoreti-
cal [3,5,7,8], have been applied, with the aim of devel-
oping a sound fundamental picture of the most basic and
general properties of these systems. Unfortunately, due
to the diversity of issues involved, no simple and univer-
sal model or approach exists to describe them in a unified
fashion. Thus, whereas some models focus, for example,
on the statistical mechanics or the transport properties of
the permeating fluid in the interior of a single pore, other
models incorporate at the outset the spatial randomness of
the system [3,5,8]. One model of the latter class is that
of a partially quenched fluid mixture, in which the kinetic
energy of one species is totally quenched, thus freezing
its structure to mimic the porous matrix. In this Letter
we report the results of our work on a Brownian dynam-
ics version of essentially this model, from the theoretical
and computer simulation point of view. We focus on the
Brownian motion of labeled particles, and on its depen-
dence on the structure of the porous matrix, and on the in-
teractions of the fluid particles among themselves and with
the matrix. Initially, our model system corresponds to a
typical model of a binary colloidal mixture without hydro-
dynamic interactions, i.e., it consists of N = N& + N2 in-
teracting Brownian particles, with N~ particles of species 1

and N2 particles of species 2, whose motion follow the
Brownian dynamics laws [9,10] employed in the study of
colloidal suspensions. These particles interact through a
radial pair potential denoted by u p(r), where the indices
n and p refer to species (1 or 2). Their free Brownian
motion is determined by the free-diffusion coefficients D]
and Dz, respectively. Such a model, with u p(r) given by
the repulsive Yukawa potential, has been widely studied
in the context of colloid dynamics [11,12]. There, a rea-
sonable understanding has emerged, based on the results
of Brownian dynamics simulations and on the development
of corresponding theoretical approaches [11—14]. This un-

derstanding has led to a satisfactory interpretation of ac-
tual experimental measurements in suspensions of highly
charged polystyrene spheres in water [15],where hydrody-
namic interactions are indeed negligible, and even in hy-
drodynamically concentrated hard-sphere dispersions [16].
The connection with porous media could be conceived as
an extremely asymmetric colloidal mixture, in which the
particles of one species are extremely less mobile than
the others, i.e., if D2 « D~. In this limit, the particles of
species 1 will view the other species as a virtually frozen
matrix of fixed obstacles. Although the experimental re-
alization of this limit might involve a very highly size-
asvmmetric mixture, in a computer experiment we can set
Dz/D& arbitrarily, without necessarily requiring any size
asymmetry, or even any asymmetry at all in the pair in-
teractions between particles of different species. Thus,
in this work we consider the idealized limiting condition
Dz/D& 0 without asymmetry in the pair potential. We
then ask ourselves: What can we learn, on the basis of
our understanding of tracer diffusion phenomena in model
colloidal suspensions, about the Brownian motion of a la-
beled mobile particle, which interacts simultaneously with
its fellow mobile particles of species 1, and with the rigid
porous matrix of species 2? More specifically, we want to
know how will such a tracer particle move, on the aver-
age, according to the Brownian dynamics simulations, and
to what extent can this be understood in terms of theoretical
concepts developed to describe tracer diffusion in binary
colloidal mixtures, extrapolated to the limit Dz/Dt ~ 0.

To answer these questions, we start our Brownian
dynamics experiments with the N particles moving with
the same free-diffusion coefficient, D& = Dq = D, and
interacting with the hard-sphere plus Yukawa potential,

e
—zlr/a —1]

Pu ~(r) = Pu(r) =K, r ) rr, (1)

where g and K are the dimensionless screening and cou-
pling parameters, p = (ksT), T being the temperature
and k~ being Boltzmann's constant, and with cr the hard-
sphere diameter. After equilibrium has been reached, we
set D2 = 0, thus freezing the positions of particles of
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species 2 in a certain spatial configuration, forming in this

way a matrix of fixed obstacles, the porous medium, in
which the other particles continue to diffuse with a free-
diffusion coefficient D& = D, until the system equili-
brates again. After this, averages are calculated. Results
from this experiment are reported below.

From a theoretical point of view, one would like to
understand the relevant results of this experiment in terms
of the microscopic properties of the system. With this
aim, we consider two independent theoretical approaches
describing the Brownian motion in colloidal mixtures in

the limit D2 ~ 0. We present results for the mean squared
displacement W(t) = ([Ar(t)] )/6 or, equivalently, the
time-dependent self-diffusion coefficient D(t) —= W(t)/t,
of labeled tracer mobile particles, and its asymptotic long-
time value D

The first theory derives from the generalized Langevin

equation approach developed by Vizcarra-Rendon and
Medina-Noyola [17—19]. This theory provides expres-
sions for the time-dependent friction function Ag (t) of
a tracer particle of species n due to its direct interac-
tions with the other Brownian particles in the equilibrium
mixture, in terms only of the partial static structure fac-
tors 5 p(k) and of g = kqT/D . From Ag (t), other
tracer-diffusion properties, such as W (t), follow. Here
we adopt about the simplest approximate version of this
theory, referred to as the Fick plus decoupling approxima-
tion (FDA) [19]. In the corresponding results for a binary

0 0mixture, we set D2 = 0, Di = D, and assume that the ra-
dial distribution functions (RDF) are such that g tt(r) =
g(r), with g(r) being the RDF of a monodisperse system
with particle concentration n = nt + n2, with n = N /
V. The resulting expression for Apt (t) is (dropping from
now on the subscript 1)

3 2 2 o n) 2 o 1+ n2h(k) n2
d kk, h (k)exp[ —k D t] exp —k D t +

(2)

where h(k) is the Fourier transform of h(r) = g(r)—
1. In the self-diffusion limit (n2 = 0), this result coin-
cides with Hess and Klein's mode-mode coupling expres-
sion [12].

The second theory is based on exact short-time con-
ditions for the tracer-diffusion propagators provided by
the many-particle Smoluchowski equation [20,21]. In the
simplest version proposed by Arauz-Lara and collabora-
tors [13,22], and referred to as the single exponential ap
proximation (SEXP), we take the same particular cases
and limits as above, with the following result:

W(t) = DsExpt + 7 (D Dspxp) (1 e ), (3)

where Dspxp = [1 —nA /B(2 —x2)]D and r =
kqTA/D"B(2 —x2) with A = f d r g(r) (k V) u(r),
B = f d3r g(r) [(k V)Vu(r)], and xz = n2/n, the
molar fraction of fixed particles.

Before going further, let us see how realistic the theo-
retical assumption that g p(r) = g(r) is, according to the
computer simulation experiment. Before the position of
the particles of species 2 are frozen, our system is just
a monodisperse Brownian fluid in thermodynamic equi-
librium, whose corresponding g(r) is presented in Fig. 1

(open circles). After we freeze the position of the par-
ticles of species 2, we calculate the RDF of the mobile
particles, g~~(r), and of the fixed particles around a mo-
bile particle, gt2(r), for a given value of x2. In Fig. 1 we
also compare gt ~ (r) and gt2(r) with g(r) for x2 = 0.5 and
1.0. This figure indicates that the theoretical assumption is
indeed consistent with the simulation results. Let us men-
tion that the latter correspond to an average over differ-
ent configurations of the matrix of fixed particles (around
10 for xq = 0.5 and around 200 for x2 = 1), which is
equivalent to sampling the configuration space of the fixed
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FIG. 1. Brownian dynamics results for the radial distribution
function g(r), g~~(r), and g~2(r).

particles. A similar average will also be involved in cal-
culating tracer-diffusion properties. In that case, however,
there will be a strong dependence on x2, and this depen-
dence is precisely what we want to describe.

The previous results allow us to say that the assumption
just discussed will not be an important source of error in
the predictions of the two theories. Let us now describe
some of the virtues and limitations of these theories that
can be advanced even in the absence of simulation results.
First, we expect them to perform better in the regime
where the relative concentration of fixed particles is very
small (i.e., for very high "porosities"), in which the friction
on a tracer particle originates mostly from its collisions
with other mobile particles. In the actual "self-diffusion"
limit (xq = 0), these two theories have been studied, and
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exact short-time condition. Instead, it leads to the same
result for the initial slope, but with —c(r) replacing u(r)
in the expression for A [c(r) being the direct correlation
function]. This explains the early departure of the FDA
results from the BD simulations. Still, the comparisons
just presented allow us to conclude that, in spite of the
complexity of the problem, and the apparent simplicity of
the theoretical approaches, the qualitative and quantitative
theoretical predictions are in reasonable general agreement
with the experimental results, at least in the regime where
strong trapping of the tracer particles by the pores of the
matrix is not the dominant effect.

This work was partially supported by CONACy T,
Mexico, Grants No. 3882E and No. I9109.

FIG. 4. As in Fig. 3, but varying the composition and Axed
coupling, K = 100.

pling, K = 500, the two theories predict reasonably well
the very initial drop of D(t), but the inaccuracies expected
at longer times for this strong coupling already manifest
themselves, even at this intermediate porosity. The appar-
ent better agreement of the FDA results, which indeed is
observed in general at this value of x2, is not a general
feature of these comparisons, as we can see from Fig. 4,
where we have D(t) for fixed coupling, K = 100, and for
x2 = 0, 0.5, and 1. As expected, both theories yield ac-
curate results for the first two cases (high and intermediate
porosities), but exhibit the quantitative inconsistencies al-
ready expected from the previous discussion (see Fig. 2 for
K = 100 and x2 = 1). This time, the simulation data in
the intermediate regime in Fig. 4 seems to favor the SEXP
approximation over the FDA results.

The simulation results in Figs. 3 and 4 also exhibit
another interesting feature, relating to the very initial decay
of D(t). Thus, from Fig. 4 we can see that the apparent
initial slope of D(t) is independent of x2, whereas from
Fig. 3 we see that it does depend on K. As for the theories,
both of them predict this to occur. The physical reason
is that in the very initial times at which the effects of
the interaction of the tracer particle with its surrounding
cage are first manifested, the tracer cannot yet distinguish
if the particles around it are fixed or mobile. It moves
as if in the bottom of the potential well produced by the
repulsion of an average rigid cloud of particles with a
local density around it given by ng(r). These notions
are built in the physical principles on which both theories
are based. In fact, if we expand the SEXP result in

Eq. (3) in powers of t, we find that the initial slope of
D(t)/Do is given by npD A)2, whic—h does not depend
on x2, but depends strongly on K through the integral
A involving u(r) This is an exact . result (at least for
xq = 0), and it explains the close agreement of the SEXP
short-time results with the Bode diagram (BD) data at
all values of K and x2. The FDA does not satisfy this
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