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Electro-Osmosis on Inhomogeneously Charged Surfaces
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The electro-osmotic How generated by an electric field E„,in a fluid bounded by surfaces bearing
a charge varying in space is considered. Focusing on a slab geometry, I characterize the formation
of steady convective rolls and describe their morphology as a function of the slab thickness. These
rolls can be used to generate net currents and forces, even for zero average surface charge density.
Moreover, the current (or the force) can be perpendicular to the applied field, opening the way to a
variety of microscopic electromechanical devices.

PACS numbers: 82.65.Fr, 82.45.+z, 83.50.Pk, 85.90.+h

An external electric field induces motion of an elec-
trolyte fluid in the vicinity of a charged surface. This
well-known phenomenon is usually referred to as electro-
osmosis or electroendosmosis. It provides a framework
for relating the electrophoretic mobility of charged parti-
cles in solution to their surface or "zeta" potential [1,2].
It is also of great importance in separation technologies
using electric fields as it relates overall motion of the fluid
to the surface properties of the bounding walls. An espe-
cially significant case is that of capillary electrophoresis,
as wall/fiuid contacts are omnipresent (so as to limit dis-
persive convective effects resulting from Joule heating).
Electro-osmosis has also been proposed as a propulsion
mechanism for cells without motile apparatus but able to
generate electric potential gradients t3].

In this Letter, an inhomogeneous surface charge distri-
bution is considered. This is, in principle, of importance
for at least three reasons. First, it models the effect of
defects in an otherwise homogeneous system. Second,
inhomogeneous systems are generic, especially in the bio-
logical world. Third, the engineering of man-made sur-
faces has improved considerably, and allows the design of
various surface charge patterns.

To my knowledge, inhomogeneous surface charge dis-
tributions have been seldom studied [4], and then only to
describe the electrophoretic mobility of colloidal particles
t 5]. Here I will focus on a more macroscopic slab geome-
try in which an electrolyte is confined between two solid,
almost planar, parallel walls, and study the flow generated
by an electric field applied parallel to the walls. If the sur-
faces are homogeneously charged, a "plug" flow is known
to be generated. I will show that if the surface charge den-
sities are modulated in a periodic way, convective hydro-
dynamic patterns are created. Their morphology depends
on the ratio of the fluid layer thickness to the wavelength of
the modulation, and changes if the modulation on the top
and bottom surfaces differs in phase, amplitude, or wave
vector. Furthermore, these flow patterns can be taken ad-
vantage of to generate net currents and forces even for a
neutral average charge density in the liquid, and even per-
pendicularly to the applied field. This could help in de-
signing electro-osmotic micropumps or micromotors.

Let us start with conventional electro-osmosis and
introduce our notations. Consider two flat insulating
surfaces, defined as the z = ~h planes in a (x, y, z)
system of Cartesian coordinates, confining an electrolyte
solution of Debye-Huckel length ~ ', dielectric constant
e, and viscosity g. The fluid is assumed incompressible
and a low Reynolds number description valid.

If the surface charge density is constant on the two
surfaces o + = o. = a.o, the electric potential inside the
solution before application of an exterior field is tt't(z) =
gn cosh(trz)/ sinh(trh), where go = o o/etr. Indeed it
satisfies the Debye-Huckel equation (valid for ego/kT «
1) and boundary conditions

tl, t/t(~h) = ~o- —/e.
The charge density in the solution is p, = —e 5P =

EK P. If an external electric field E„,(or an electric
current) is applied parallel to the slab, this charge density
will induce a drag on the fluid, and thus a velocity field v.
In a linear response theory [2,6]

—V'p+ rjhv+ p, E=O, V. v =0, (2)

with p, the previously derived value, E = E„,—V'P the
total electric field, and p the pressure. It is then useful
to define p' = p —etr P /2 to get a formula directly
relating the velocity field to the external electric field:

—Vp' + riAv —eht/tE„, = 0, V . v = 0. (3)

Equations (1) and (3) constitute the basis for our descrip-
tion. In the homogeneous problem, the simple solution
is p' = const and v = (e/il) [t/t(z) —t/t(0)]E„,. Away
from the wall Debye layers, the velocity is thus almost
uniform v = p, o coth(t~h)E„„with jLo = Es'o/77

rro/7) K. The minus sign is easily understood: If o.n
is positive, negative charges are in excess close to the
surface, and the fluid there is driven in a direction opposite
to that of E„t.

Now consider surface charge densities modulated along
x: o.+ = on+ cos(q x + y+), o = em cos(q x +
y ), and the field applied along the same axis E,„t= E~~x.

'-ll =
Then the electro-osmotic drag on the fluid close to the
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FIG. l. On a charge-modulated surface, the quid close to
the wall is pulled periodically in opposite directions. As a
result, recirculation rolls develop on a scale proportional to the
modulation wave length.

surfaces alternates in direction. Incompressibility im-
poses recirculation in the slab, and convective rolls appear
(Fig. 1).

Thanks to the linearity of the equations, solving the
problem with arbitrary surface charge densities on the sur-
faces reduces to the analysis of two geometries, which
we choose to provide even and odd solutions in z. In
the first one the surfaces are charged in a symmet-
ric way: cr~ (x) = o.

~ (x) = opcos(qx). In the second
one, the sign of the potential of the lower plate is re-
versed (or its phase shifted by ~): o.2+(x) = —o.2 (x) =
o.p cos(qx). Equation (1) gives the corresponding electro-
static potentials:

cosh(Qz)
1/I&(x, z) = (rrp/Qe) cos(qx)

sinh Qh
(4)

sinh(Qz)
$2(x, z) = (op/Qe) cos(qx), (5)

cosh Qh

with Q = q + K . The incompressibility condition in

(3) allows us to introduce a stream function @(x,z) such
that B,P = v, and B,P = —v, . Then

@,(x, z) = ppE((cos(qx)g;(z), i = 1, 2. (6)
The functions g;(z) can be obtained generally [7], but
their expressions get much simpler in the usual limit of
very thin Debye layers K » q, h ', where Q = K:

h cosh(qh) sinh(qz) —z sinh(qh) cosh(qz)
g((z) =

hq —sinh(qh) cosh(qh)
(7)

z cosh(qh) sinh(qz) —h sinh(qh) cosh(qz)
g2(z) =

hq + sinh(qh) cosh(qh)
(8)

This approximation amounts to replacing Eqs. (1) and

(3) by a simple Stokes problem, changing the electro-
static boundary conditions rr = opf (x) into hydro. dy-
namic "slip" boundary conditions v = p, pf (x)E„,.

Using the linearity of the problem, Eqs. (6)—(8) allow
us to determine the influence of each plate. For example,
if only the upper plate is charged o.+ = crpcos(qx),
the resulting stream function is @+ = (P~ + P2)/2.
More generally, for arbitrary charge modulations, the
contributions of the different wave vectors (6) can be
summed to obtain the stream function.

Let us recall at this point that the iso-P lines are the
streamlines of the liow. Thus a contour plot of P illus-"

IItrates the convection pattern induced by F.„t.The ve-
locity field is obtained as v, = p, pE((cos(qx)g'(z) and

v& = p, pE(( sin(qx)qg(z), where g is the linear combina-
tion of g~ and g2 appropriate to fit the given electrostatic
boundary conditions.

If F„,is applied perpendicular to the charge modula-
tion E,„,= E~y, only vY(x, z) is nonzero. Equation (3)
leads to the requirement that vY + p, pE+P/Pp be a har-
monic function. In the limit ~ && q, h ', the even and
odd charge distributions (4) and (5) lead to the velocity
fields

cosh(qz)
v) ——p, p cos(qx) E„,,cosh qh

sinh(qz)
vp ——p, p cos(qx) . Ei„.

sinh qh

(9)

(10)

The electric field drives the fluid along y in alternating
directions as one goes along x. This surface effect
vanishes (and the velocity reaches its average value zero)
over a distance =q ' in the z direction. The flow created

by an arbit~a~y field F-,„=F-II& + F.&y is obtained by a
linear combination of (6), (9), and (10).

Let us return to the more interesting recirculating

patterns obtained for a "parallel" field E'„t= E'IIx.
What if the plates are far from each other? Consider

the lower plate charged o. = o.p cos(qx) and a gap width
much larger than the modulation wavelength 27r/q (and
than K '). Focusing on the vicinity of the lower plate
z) = z + h (( h, (7) leads to g(z) = z) e ~', and thus
the velocity field

v = p, pE(( cos(qx)(1 —qz))e

v, = ppE((sin(qx)qz)e

This characterizes the pattern of convective rolls, of
transverse size =q, created by the application of E„t—1 ~ "II

on a single surface (Fig. 1). For distances larger than q
the flow along x is in the direction opposite to what is
close to the surface. The velocity decays exponentially at
large distances.

What happens if we narrow the gap in the even
"face-to-face" electrical geometry described by Eq. (4)
(Fig. 2)? When the two surfaces are far apart they
develop almost noninteracting patterns, the exponential
tails in the stream function melting in a cosh shape.
A plot of v, (z) thus displays two symmetric extrema
characterizing recirculation. If the plates are brought
closer, however, the two patterns tend to compress each
other, and the z size of the rolls eventually becomes
h (Fig. 2). The recirculating Ilows of the two surfaces
merge so that v, (z) now only has a single extremum at
z = 0. The transition occurs for tanh(qh) = qh/3. In
the limit K » h ' » q, the fiow is locally (at a given x)
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example, the case where only the bottom plate is charged,
"ll

o = 0, o = o p cos(qx). Then E,„E= E~~x tends to
push Iluid upwards for qx = 7r—/2 (mod 2'), and pull
it downwards for qx = vr/2(mod27r) By. placing on
top an undulated surface z+ = h[1 + n cos(qx)], with
a & 0 (Fig. 3), the upward stream is "bent" to the right

It(direction of E,„E),whereas the downward stream pumps
liquid from the left. It is thus natural to expect an average
current to the right.

To quantify this statement I consider more generally
an undulation z+ = h[1 + n cos(qx + 4)], always in
the limit of a very thin Debye layer. The corresponding
Stokes problem, with boundary conditions v(x, —h) =
po cos(qx)E, „E(x,—h) on the lower plate and v(z+) = 0
on the upper one, can be solved perturbatively for small
values of a. For a field parallel to both the undulation
and charge modulation, the average current Jtl in the slab
is to first order in n [7]:

0 0.2 0. 4 0. 6 0. 8 1 0 0.2 0. 4 0. 6 0. 8 1 0 0.2 0. 4 0. 6 0. 8 1

the sum of a pluglike electro-osmotic Row corresponding
to the local value o.(x) and a recirculation Poiseuille liow:

3 (h2 —z2)
v, = —p, oE~~ cos(qx) 1 —— . (12)

2 h2

An even clearer transition is obtained (Fig. 2) when the
charge modulations of the two surfaces are opposite [or
shifted by ~, Eq. (5)]. Again, when h && q ', the two
surfaces develop almost independent convective patterns.
But upon narrowing of the gap, these merge so as to reduce
the dissipation due to shear: recirculation now brings
the fluid directly from one surface to the other (Fig. 2).
Correspondingly, v, (z) becomes monotonic for qh smaller
than a critical value given by coth(qh) = qh/2.

For phase shifts of the modulations y —y+ interme-
diate between 0 and ~, the streamline patterns are bent
with respect to the g axis, but tend to straighten as h is re-
duced (Fig. 2). Using linear combinations of (7) and (8),
one can analyze generic situations where the modulations
on the two plates are of different wave vector, amplitude,
or phase [7].

Let us now consider the possibility of generating a
net Quid current. In the geometries considered above
[(6), (9), and (10)) only the q = 0 components of the
surface charge density modulations were able to induce an
average flow. This is due the symmetry between positive
and negative charge densities in this linear problem.
To obtain a net current one thus needs to break this
symmetry.

There are simple ways to do so, even for a symmetric
charge density modulation of zero mean value. Take, for

FIG. 2. Streamlines (iso-@ lines) plotted on a reduced scale:
(xq/2~; z/h). The tluid rotates in opposite directions in
bright and dark areas. From left to right the gap is reduced,
hq = 6;3;0.5. From top to bottom the shift is increased,
y

- —y = 0; vr/2; m.

with

p, oh tl

J~~
= — f[~ (qh) n cos(CE)Eey E,

2
(13)

cosh(2u) [2u —tanh(2u)] u
fbi(u) = u 2 2 +, (14)

2[sinh (u) cosh2(u) —u2] sinh(2u)
'

which is positive. Thus for pro ) 0, o. ) 0, 4 = 0,
ll

J~~ is in the same direction as E,„E (recall that p, EE is
then negative), in agreement with the qualitative picture
sketched above (Fig. 3). It is also wise to verify that
changing the sign of n is identical to shifting 4 by
vr. The current (13) logically increases with a and is
significant when the shape and charge effects, both of
range q ', interact: qh & 1 [f~~(qh) = 8(qh) exp( —2qh)
for qh » 1 and f~~(qh) = 3/2 for qh && 1]. Using,
for example, biologically sound values of a charge per
nm, a field of 0.1 mV/pm, I~

' = 1 nm, and
10 2

g cm ' s ', velocities of order 1 p, m/s can be
obtained for o. = 10

The Row also generates an average stress ~tt on the
upper plate, which to first order in n is [7]

k(((qh)n cos(C )Eexi,g jLO ll

4h

where kll(u) = fll(u) 2u j sinh(2u) is positive [kll(u) =
1/2 for sEnall u]. So if the upper plate is allowed

Eext

FIG. 3. If an undulated surface is adequately placed on top of
a charge-modulated surface, the symmetric flow is biased, and
a net current is generated.
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to move along x, its two equilibrium positions
~ vr/2 correspond to no current situations, the sign
of E~~ dictating which one is stable (4 = —7r/2 for
Eii, er, op ) 0).

If an electric field perpendicular to the modulation

E„,= F&y is applied, the hydrodynamic problem is
easily solved as v = ij~(x, z)y. To first order in n a net
shear fIow is generated with an average current

Ji = — fi(qh)n cos(C&)E„,, (16)
2

with f~(u) = —u/ sinh(2u) ( 0. The sign can be
checked through the following argument, valid for small
qh. Take go ) 0, n ) 0, and 4 = 0. Then the slab
is narrower in the regions where the charge density in
the solution is positive. The local current is the average
velocity times the local thickness of the slab. The
average velocity is roughly half of the one imposed by
the Debye layer, and has thus the same absolute value in
negative and positive charge regions. The local current
is thus stronger in the wider regions of negative charge
densities, which leads to an overall current in the direction
opposite to E„,, in agreement with (16) as p, o ( 0. A
formula similar to (15) holds upon replacing ~~ by t, with
&i = fi.

I have thus shown that for commensurate surface
undulation and (zero-average) surface charge modulation,
an external field indeed creates a current and a drag on
the plates. To reverse the direction of the current one can
simply reverse the sign of the field, or move the upper
plate by rr/q to reverse the role of positive and nega-
tive charges. Moreover, the parallel and perpendicular
"susceptibilities" are of opposite sign (and thus different).
So, for a generic field Eext = Flj~x + Fzy, the generated
average current and average force will have components
perpendicular to E,„,. The current (or the force) can even
be strictly perpendicular to F.„tfor a precise orientation
of the latter. All these effects are of first order in the
undulation amplitude and quantified by Eqs. (13)—(16).
In contrast, for a homogeneously charged surface and an
undulated one, the transverse current is O(n ) and the
parallel one is O(n ) and always nonzero [7].

A variety of geometries where the plus or minus
charge symmetry is broken [7,8] give rise to similar
effects. In particular, it is much easier and robust to
engineer simultaneously the undulation and the charge
modulation on the same plate, for example, by erasure
along periodic strips of a thick deposit. This furthermore
grants interaction of shape and charge effects even if the
gap is larger than the modulation wavelength.

In summary, I have described electro-osmosis on inho-
mogeneously charged surfaces. To address the problem

I have used standard linearizations. First, the electrostat-
ics in the electrolyte have been described by the Debye-
Huckel approximation (1). Second, I have focused on the
linear response to the applied field F„tand thus neglected
the deformation of the counterion cloud (2). Eventu-
ally Eq. (2) is the linearized version of the Navier-Stokes
equation valid at low Reynolds number.

However, this linear analysis proved sufficient to ex-
hibit and quantify the onset of a pattern of convective
rolls, the possibility of generating average currents and
forces even in situations of zero mean charge density, and
the fact that these may have components perpendicular to
the applied electric field. These calculations provide the
necessary tools to quantify the infIuence of surface de-
fects in usual electro-osmosis. They are also meant to
suggest experimental studies of roll patterns in man-made
geometries designed by lithography [9,10]. Eventually,
electromechanical couplings are essential for the design
of micropumps and micromotors, a current field of inter-
est to both physicists and biologists [3,8 —11].
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