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Exact First-Passage Exponents of 1D Domain Growth: Relation to a Reaction-Diffusion Model
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In the zero temperature Glauber dynamics of the ferromagnetic Ising or q-state Potts model, the
size of domains is known to grow like t'12 Rec.ent simulations have shown that the fraction r(q, t)
of spins, which have never Ilipped up to time t, decays like the power law r(q, t) —t (~) with a
nontrivial dependence of the exponent 0(q) on q and on space dimension. By mapping the problem on
an exactly soluble one-species coagulation model (A + A ~ A), we obtain the exact expression of 0(q)
in dimension one.

PACS numbers: 82.20.Fd, 02.50.Ey, 05.40.+j, 05.50.+q

Phase ordering and domain growth in systems quenched
from a disordered phase to an ordered phase has been a sub-
ject of much interest during the last fifteen years, in fields
ranging from metallurgy to cosmology [1]. It is well estab-
lished that the pattern of growing domains is self-similar in
time and that the characteristic domain size increases with
the simple power law tp For e.xample, p = 1/2 holds
for all systems with short range interactions described by a
scalar nonconserved order parameter. However, as noted
for the autocorrelation function [2], correlations at different
times are characterized by more complicated exponents.
Recently, the fraction of spins r(q, t), which have never
Hipped up to time t, has been measured in simulations of
coarsening at zero temperature for the Ising and for the
q-state Potts models. This fraction decreases with time
like the power law [3,4]

(q) (1)
and numerical data indicate that the exponent 0(q) varies
with both q and the dimension of space. Since dr(q, t)/dt
measures the probability that a given point is crossed for
the first time at time t by a domain wall, 0(q) can be
viewed as a first-passage exponent [5]. The aim of the
present Letter is to give the exact expression of 0(q) in
one dimension:

, &2 —q& '
0(q) = ——+ cos ' . (2)

8 vr2 ( 2q )
This result fully agrees with previous numerical predic-
tions based on Monte Carlo simulations [3,4] or on finite
size scaling calculations [6]. It implies that for the Ising
model 0(2) = 3/8 is exact. Note, however, that for other
choices of q, the exponent 0(q) is, in general, iiTational
[for example, 0(3) = 0.53795082. . .].

To obtain (2), we are going to follow four main steps.
First, by using finite size scaling we will relate the
exponent 0(q) to the large L behavior of the fraction
pz(q) of spins which never fiip between time 0 and time
oo for a finite one dimensional system of L sites with
periodic boundary conditions (for the zero temperature
Glauber dynamics of the q-state Potts model). Second,

we will show that the calculation of pz(q) can be reduced
to solving the steady state of a reaction-diffusion model
(A + A ~ A) on a one dimensional lattice of L sites with
a source of particles at the origin (i.e. , at site 0 = L). Our
third step will be the solution of the steady state of that
reaction-diffusion model leading to the exact expression
of pz(q) for arbitrary L and q. Last, we will extract
the exponent 0(q) from the large L behavior of this
expression.

In an infinite system, it is known [7,8] that starting
with a random initial condition the size of domains grows
like t'~ . For a finite system of size L, one expects the
dynamics to be very much the same as for the infinite
system when t (& L (as the size of domains is small
compared to the system size). On the other hand, for
t » L, there is a single domain left in the system and
the dynamics stops. Therefore one expects that pz(q)—
r(q, L2), which implies that

L
— e( ) (3)

We obtain, in what follows, an exact expression of pz (q)
valid for all sizes L and Eq. (3) will then allow us to
extract the exponent 0(q).

We now show that the calculation of pz(q) is equiva-
lent to solving the following reaction-diffusion [9] model
(A + A ~ A) defined on a ring of L sites with a source
of particles at the origin (that we choose to be at site
L —= 0). The origin (site L) is always occupied and the
other sites i (for 1 ~ i ~ L —1) are either occupied by
a particle A or empty. During every infinitesimal time in-
terval dt, each particle hops with probability dt to its right
neighbor and with probability dt to its left neighbor (and
does not move with probability 1 —2dt) If two par-.
ticles occupy the same site, they instantaneously coagu-
late (A + A ~ A). In addition, whenever the particle at
the origin jumps to one of its neighbors, a new particle is
instantaneously produced at the origin.

In the steady state, injection of particles at the origin is
balanced by aggregation of particles in the bulk, and one
has a probability Pz(m) of finding m sites occupied on
the ring of L sites. The connection with the spin problem
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described above is made [6] by expressing the probability

pl (q) of never Ilipping (from t = 0 until t = ~) in terms
of Pt. (m),

L
1

to~(q) = g P~(m) (4)
m=1

This formula is obtained by remembering that updating
a spin in one dimension with Glauber dynamics at zero
temperature simply consists of choosing for its new value
the value of one of its two neighbors at random. When
the value V of a spin 5; at time t is traced back in
time, a random walk is obtained which connects 5; (t)
through various ancestors to a particular spin in the initial
configuration with value V. Now, let us consider all
the updates of the spin at the origin. They all give
rise to random walks going backward in time. These
walks can merge and are created at the origin exactly as
in the one-species coagulation model. So, in the limit
t ~ ~, they lead to m different ancestors in the initial
configuration with probability PI(m). Equation (4) then
follows by noting that the spins in the initial configuration
are uncorrelated and that the spin at the origin never flips
if and only if all its updates have the same value.

We now come to the full exact solution of the reaction-
diffusion model steady state, which is the crucial point of
the present work. It is known that some properties of the
coagulation model A + A ~ A can be calculated exactly

[10], even in the presence of a fixed source [11]. The
properties which have been calculated [10], so far, on this
sort of problem are the probabilities that a (connected)
region of consecutive sites will all be empty. This is
because one can obtain closed kinetic equations [see (5)
below] for these quantities. The key to our exact solution
is that more complicated quantities like the probability of
having 2 (or 3 or. . . n) disconnected empty regions can be
expressed in a simple way in terms of these probabilities
that a single connected region is empty.

Let us define for the coagulation model the probabilities
B;j, 1 ~i & j ~L, that the segment(i, i + l, . . .,j-
Ij contains no particle [6,10]. These quantities change
when a particle enters or leaves the segment through its
extremities, and this can be expressed in terms of the
B; ~

themselves (for example, the probability of finding
a particle at site j given that sites i, i + 1, . . . , j —1

are empty is B; J
—B; ~+i). Therefore, the B; J's satisfy

closed kinetic equations which read in the steady state

B+iq+B, iq+B j+i+Bq i
—4Bq =0. (5)

Modified equations for j = i + 1 and boundary condi-
tions coming from the permanent occupation of the origin
can be taken into account by the conventions B;; = 1 and

Bo~ = B,L+i = o
The explicit solution of (5) is as follows [6]:

8 sinkn sink'n(sinkio. sink'j n sinkjn si—nk'tn)
B;)

k „,„&,,dd (L + 1)2 (cosk'n —coskn) (2 —coskn —c sok'n)
' E'(j,

with n = 7r/(L + 1), 2 ~ k ~ L, and 1 ~ k' ~ L
[Note that (6) is not valid for j = i since it gives B;; = 0
instead of 1.] For example, when L = 4, this gives
Biz = B34 26/44, Bi3 = B24 = 16/44, Bi4 =
8/44, and B23 = 30/44.

These known results can be generalized by introducing
the probabilities B~,",);, ;, , ;, that there is no particle in

any of the disconnected segments (ii, ii + 1, . . . , i2—
I), . . . , (t2n —i . . . , t2n —I) Wltll ti & t2 « '. t2n.
Similar to the B; ~'s (to which they reduce for n = 1),
the B~"l's satisfy equations analogous to (5). The new
boundary conditions can be taken care of by the conven-
tion that B reduces to the corresponding B " ' if two
successive indices coincide.

It turns out that the diffusionlike equations satisfied by
the B~")'s can be solved exactly and that their solutions
can all be expressed in terms of the B; ~. Namely,

B i,j,k, l Bi,j Ba l + Bi,tBj l,
—Bi,ad, l (7)(?).

and, more generally,

~(n)
&)~ n&n.

(8)
where the sum is over all the permutations of the in-
dices [ii, i2, . . . , i2„) with the constraints i ~i) & i gl, . . . ,

L
1

PL (m)
m=1 qm

w(&i, ~ &t.—i)
q»+ "+7L-i

&I ~ ~ ~ ~ ~7L —1

Using the identity q' "+"+' "-' = P, [I + (q—
1) (1 —rj)], expanding the product and regrouping the
different terms, we obtain

i (2 iln& i (2„~. [Note that this simply means that one
should sum over all possible pairings of the indices and
that (7) and (8) are Pfaffians [12]]. One way to prove (7)
and (8) is simply to check that their right-hand side sat-
isfies the same diffusionlike equations as the B~")'s when
B; J is solution of (5) and that they indeed reduce to the

expression for B " ' if two successive indices coincide.
In the case L = 4, one finds that B(i2 2 3 4 = 15/44.

Once the B~")'s are known, all the steady state proper-
ties of the reaction-diffusion model are in principle com-
putable, in particular, the Pl. (m), and as a consequence
(4) the pl (q). There is a simple way of obtaining the

pI (q) in terms of the B " 's: introduce the (normalized)
weights w(ri, . . . , rl. i) in the steady state of configura-
tion (ri, . . . , rl. i) (where r, = 1 if site i is occupied and

r; = 0 if it is emtpy); we can write the sum over possible
particle numbers in the steady state in Eq. (4) as an ex-
plicit sum over all possible configurations
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1
pi(q) = I +

qI.—1

1 ~i&j~l
q

—1j 'Bj+
1&i&j&k&1&L

( 1)J I+I kB( ~ ~ ~
~ (10)

This gives the pl (q) in terms of the known B; J and it can
be used in this form. For example, for i. = 4, it gives
p4(q) = (8q + 23q + 12q + 1)/44q, in agreement
with what had been obtained by a direct calculation for
small sizes [6].

An equivalent but more compact and manageable form
can be obtained by defining two antisymmetric matrices
A,J

= —AJ; = —(q —1)~ ' and C,j = —CJ; = B; ~ for
1 ~ i & j ~ L. Equation (10) can then be rewritten
simply as [13]

1
pi (q) =, det(1 + AC) . (11)

qL —1

This expression (11) is our main exact result.
We have only been able to compute exactly the deter-

minant of Eq. (11) for q = 0 (and I!) [14]. For other
values of q, we could only evaluate its asymptotic be-
havior. We summarize the main elements of our estima-
tion. A detailed derivation of (2) will be given elsewhere
[14]. For large L, and i, j far from the boundaries, B; j
becomes a continuous function p(x, y) of x = i/L and

y =j /L which satisfies the Laplace equation [the con-
tinuous version of Eq. (5)) with the boundary conditions
P(x, x) = 1, P(0, x) = P(x, 1) = 0. This is a slowly
varying function except in the two symmetric arbitrary
smallcornersO ~x & y && 1and1 —

y & 1 —x && 1,
where its asympotic behavior is

p(x, y) = p(1 —y, l —x) = (4/7r) tan '(x/y),

forO&x &y «1. (12)

These two small neighborhoods are responsible for the
singular behavior of the determinant for large L. In the
region x & y « 1, p(x, y) is of the form f(x/y)
The singular contribution can be obtained by trans-
forming the matrix in (11) into a matrix which is
very similar to a Toeplitz matrix [15] in the vari-
ables ln(x), ln(y) and by computing the trace of its
powers. The region 1 —

y & 1 —x « 1, where

P(x, y) = f[(1 —y)/(I —x)], gives an equal singular

!

contribution. In this way, we obtain for 1 ~ q & 2,

0(q) =— ln 1 —2
4~ q 2

dx (x'" + x '")f'(x) (13)

Using (12), this leads to (2) for 0(q). When q ~ 2, there
is an additional term to (13) coming from an eigenvalue
of the transformed matrix which becomes very small as
L ~ ~. As a consequence, (13) has to be replaced by its
analytic continuation from the range 1 & q &. 2 and this
leads again to (2).

In the whole range of q, the result (2) is in excellent
agreement with previous numerical estimates [3,4,6]. For
example, for q = 5, the exact prediction (2) gives 0(5) =
0.6928365. . ., which agrees with the numerical estimate
0.6928 +. 0.0003 of [6].

Our result (2) shows that systems as simple as the
one dimensional Ising or Potts model at zero temperature
exhibit rather complicated power law decays very similar
to other irreversible processes such as reaction-diffusion
[7,9] or sequential-parking [16]problems.

Result (2) is also reminiscent of the exactly known ex-
ponents [17] of the equilibrium Potts model in dimension
two. It would be interesting to see whether the meth-
ods originally used for these equilibrium problems or the
more recent conformal theory techniques could be ex-
tended here to rederive (2).

We have already noted that expressions (7), (8), (10),
and (11) are Pfaffians [12] which are always present
in free fermion problems. In fact, another way of
solving the coagulation model (with its boundary) consists
of mapping it onto the free fermion problem. The

details of this solution, which requires several successive
transformations of the original problem, will be given in

[14]. As the problem of the steady state of the reaction
diffusion is completely solved, one could calculate steady
state properties such as density profiles and correlation
functions. Also, as the whole problem can be reduced
to the free fermion problem [14] (through unfortunately
rather complicated transformations), one should be able to
calculate all kinds of unequal time correlations.

Last, it is worth noting that the different scaling
behaviors of pl (q) when q varies arise in (2) from
the asymptotic form of Pl. (m) for L» 1, Pi (m)—
exp[lnL g(m/InL)], where the function g is a Legendre
transform of 20(q) with respect to ln(q) in a way
quite reminiscent of the usual description of multifractal
measures [18].

We thank Deepak Dhar for very stimulating discussions
while we were visiting the Isaac Newton Institute at
Cambridge, in particular, for suggesting the idea of
transforming the model into a free fermion problem.
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