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Transformer Configuration in Three Dimensional Josephson Lattices at Zero Magnetic Field
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Recent experiments on Bi2Sr2CaCu20q Y
superconductors at zero magnetic field have been performed

with a transformer configuration of contacts. We interpret the experimental data on the basis of large-
scale Langevin dynamical simulations of a three dimensional (3D) Josephson lattice with a current bias
through a single plane. We show that the experimentally observed effects can be attributed to linking
thermal vortex loop excitations that cause voltages in neighboring superconducting planes to lock in a
narrow temperature range near the 3D phase transition.

PACS numbers: 74.50.+r, 64.60.Cn, 74.60.Ge, 74.72.Hs

Giaever, in a pioneering "dc flux transformer" experi-
ment showed that, with vortices linking two superconduct-
ing films, a current drive in the upper film induces locked
voltages in both films [1]. A similar contact configura-
tion has been used recently to study nonlocal transport
properties of high-T, superconductors [2—6]. In these ex-
periments a current was fed into one ab face of a sin-

gle crystal, and both the primary voltage drop (across the
same face) and secondary drop (across the opposite face)
were measured. Most of the experiments were performed
in a magnetic field both in Bi2SrzCaCu20 [2,6] and in

YBa2Cu307 [3,4], to probe vortex motion along the crys-
tal c axis through the correlations between the primary
and secondary voltages. The experimental results have
been interpreted as due to a nonlocal conductivity [7] in
the linear regime of the vortex liquid, and due to flux-line
cutting phenomena [8] in the nonlinear regime below the
irreversibility line. Recently, Wan et al. [5] have con-
ducted transformer experiments at zero magnetic field in

Bi2Sr2CaCu20g ~, finding a peak in the secondary volt-
age around the critical temperature T, ~ Here, we provide
a theoretical interpretation of this latter experiment.

The high-T, superconductors can be modeled by as-
suming that, below a mean field transition temperature
TM", the relevant physics is given by the thermal fluc-
tuations of the phase 0 in the superconducting order pa-
rameter I" = ~'Ir~e' . A lattice version of this approach
leads to the anisotropic three dimensional (3D) XY model
or Josephson lattice [9—13], the anisotropy arising from
the layered nature of the high-T, superconductors. This
model has been extensively applied to the study of the
thermodynamic phase transitions at both zero [9—11] and
finite magnetic fields [12] in high-T, superconductors.

The Hamiltonian of the 3D anisotropic XY model is

= —g J„cos5~0(r),
r, p,

where 0(r) is the phase at the 3D lattice site r, 5~0(r) =
0(r + p, ) —0(r), and p, = x, y, z. The anisotropy is

gJ = J~/J~~, with J, = J~ =
J~~ and J, = Ji.

To study a current-driven sample, the flow of cur-
rent has to be modeled taking into account local dissi-
pation and that a time dependent phase induces a voltage
V = (4u/2m. ) (d0/dt), with 4o = h/2e, the quantum of
Aux. This is usually studied with current-conserving over-
damped Langevin dynamics [13]. The current I~(r) fiow-
ing in each bond of the 3D cubic lattice is taken to be

I„(r) = tI~O dh„o(r) + I, „sin 5~0(r)2' ~ dt

+ ii„(r, t), (2)

this determines the full set of dynamical equations. The
boundary conditions, for the transformer configuration,
are open along the x and z directions, periodic along
the y direction, and current driven in the "top" plane
z = 1:I„,(0, y, 1) = I,„&(L,y, 1) =—I and I,„,(r) = 0
otherwise. From (2) and (3) we obtain

Here the 3D Green's function is the solution of
4~ (I/R~)AP, G(r, r') = 8, , under the given boundary
conditions. Thus the information of the anisotropy in the
resistance network is contained both in G(r, r') and in
the correlations of 7i~(r, t) We simulate .Eq. (4) both
with a Fourier accelerated algorithm [14] and with a

with I, ~
= 27r J~/40, and R~ the resistance along the

p, direction. We take R, = Ry = R~~, R, = Ri, and
the anisotropy gg = K~~/R~. We assume gJ = gtt =
g, for simplicity, and we will study g = 0.1 here. The
Langevin thermal noise term is assumed to have corre-
lations(il~(r, t)ri„(r', t')) = (2kttT/R~)6~ ~ Ii„,6(t-
t') Together wi.th the condition of current conservation,

I„r —I~r —p, = ~I~ r =I«tr;
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molecular dynamics algorithm [15],previously used in 2D
networks. We integrate (4) with the Helfand-Greenside
[16] algorithm with At = 0.05' (r = 4o/2~%. ~[I, ~[)

and the integration time t = 10 ~ after a transient of
2 x 10'~.

We study first the equilibrium behavior. We obtain
the 3D critical temperature T, by calculating the helic-
ity modulus Y,q along the xy directions [10] (see Fig. 1).
We obtain T, = 1.33 for a 48 X 48 X 8 lattice, with
periodic boundary conditions in order to obtain better sta-
tistics. (Temperatures are normalized by J~~/kz. ) Re-
cently, Chattopadhyay and Shenoy [11]have shown that,
for gJ ~ 0.25, below the 3D T, there is a crossover tem-
perature TKT reminiscent of the Kosterlitz- Thouless phase
transition in 2D [17]. We found this crossover temper-
ature by studying the nonlinear I-V characteristics with
homogeneous bias current, with the same procedure as in
the experiment of [5]: TKT = 1.0. We do not see evi-
dence of structure in the helicity modulus at TKT [11].
Here, we have neglected the temperature dependence of
J~, which is J~(T) —TMF —T for T —T, . The effect
of a T-dependent J„ is to "squeeze" the temperature in-
terval around T„making TKT and T, very close, as in the
experiment [5]. By neglecting such T dependence we can
conveniently separate the effect of both temperatures.
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FIG. 1. Left scale, dotted lines helicity modulus without a
current bias Y,q and with a bias in the transformer configuration
Yq calculated along the x direction. Right scale, full lines:
voltages vq(z) as a function of temperature T (normalized by
J~~ jk~), for 8 = 6. The voltages decrease from the top plane
z = 1 to the bottom plane z = L, (a) 48 X 48 X 4 la. ttice.
(b) 48 X 48 X 8 lattice. Bias I = 0.1I, ~~. Numerical results
taken in steps of AT = 0.04. Error bars are shown on the
z = I,, curves.

Under the transformer configuration, a bias current
is applied in the top plane and voltage differences
are measured in the top (z = 1) and bottom (z = L, )
planes. We calculate the average normalized voltages
v(x, z) = (r/L~) QY(0(x, y, z, t)), where (. . ) indicates
thermal (time) average. Because of the inhomogeneous
bias, the voltages depend strongly on (x, z), and there-
fore the results depend on where the voltage differ-
ences are measured. We study vr(z) = v(L —8, z)—
v(1 + Z, z). In the high-temperature limit T» T, the,
behavior is purely resistive, and the local voltage dif-
ferences v~(r) = 5~v(r) are simply given by v~(r) =
(2~r /4'o)A~ +„G(r,r')I,„,(r'), which explicitly shows
the role of G(r, r'). In this case it is easy to see that most
of the current liow between planes (along the z direc-
tion) occurs in a small region close to the edges. There-
fore vr(z) depends strongly on 8 for 8 & L,gR/~, and
otherwise is approximately 8 independent. The voltages
decrease exponentially along the z direction as vr(z)—

&/2
exp( —z/z, ff) with z,ff L,gg /7r.

In Fig. 1 we show the voltage differences vr(z) in
all the planes, as a function of T for samples of size
L, = L~ = 48 and increasing length along z, for L, = 4
and L, = 8. The bias current is applied only along
the top plane, and in this case is I = 0.1I, ~~. We see
that at a temperature T,I(I, L, ) & T, dissipation begins
in the bottom plane. This is close to the temperature
where the helicity modulus Yl of the current driven
lattice, calculated along the x direction [18], vanishes;
see Fig. 1. Here T,I(0.1, 4) = 1.23, T,I(0 1, 8) = 1.27. .

We find that T,I T, for I 0 or for L, ~, for the
currents and sizes we studied. The top plane begins to
dissipate at a much lower temperature, depending strongly
on 8 (decreasing for increasing Z, and approaching T, I ),
meaning that it is due to the onset of dissipation in
the junctions close to the edge of the sample. Figure 1

shows that while only the z = 1 plane is driven voltages
are induced in all the planes. Within some temperature
interval T,J & T & Ts(z), there is a tendency for voltages
to crowd together or lock within the error bars (shown
for the z = L, curve). The largest unlocking temperature
where v(L, ) 4 v(L, —1) within the statistical error
Ts = Ts(L, ) is shown. This voltage locking tend-ency

away from the current driven plane is t-he essential aspect
of the transformer effect When we incre. ase the number
of planes from L, = 4 to L, = 8 [see Fig. 1(b)], we see a
tendency that the voltage ve(L, ) will drop after T ) Ts.
(Also, by increasing L, the system becomes more three
dimensional; see, for example, Schmidt and Schneider
[10].) We also calculated the average normal current
.z,z+ & .z,z+ &

i~ and Josephson current i 1' Aowing between
.z,z+ & .z,z+ i

planes z, z + 1. An analysis of y(z, T) = iz /ij'
for z ) z,ff shows that y = 0 below T,I, 0 ~ y ~ 1 for
T,I ~ T ~ T~, and y increases sharply above Tq. Thus,
the dissipation in the lower planes for T,I ~ T ( Tq
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therefore no coupling between planes. For T,I ( T —T,
there is a proliferation of loops of different sizes and
shapes. In the figure we highlight some vortex loops or
lines extending from the bottom to the top plane.

In the experiments on the flux transformer effect
in an external magnetic field, the results have been
interpreted as evidence of a nonlocal resistivity in the
system [3,7]. In our model this means that the average
voltage drop in a given lattice link will be V~(r) =
P, „,R~~ (r, r')I~ (r'). It is easy to show that in the
Josephson lattice this is given in general by

t)(sin 5~ 0 (r))R„~ (r, r') = R„6„„6,, —I, „ BI~t tr'j

Clearly the nonlocal part becomes relevant as soon as
there are correlations between the 0(r), i.e., vortex loops
occur. One can estimate that the Fourier transform of
the resistance for small wave vector q will be of the
form R(q) Rp + R2(qs), thus the nonlocal part is
relevant for large s as we discussed previously.

In our calculations we have neglected the magnetic
interactions between planes. They are not relevant to
the essential nature of the transition at T, . However, in
the experiment of Wan et al. [5], they are present since
the magnetic penetration depth is smaller than the sample
size A b ( L . This will result in a stronger effective
interaction between vortex segments in different planes,
making the vortex loops "stiffer, " and thus the coupling
effect will be enhanced when compared to our results
with the 3D XY model. The magnetic interactions and
screening effects are qualitatively relevant, however, for
the interpretation of experiments at weak magnetic fields,
H ~ H, t, like the ones recently conducted in Ref. [6].

The transformer effect discussed here should also be
present in isotropic or weakly anisotropic systems, like
YBa2Cu307. The difference is that there will be a less
prominent drop in v&(I, ) above T„probably similar
to the one shown in Fig. 1(b). The coupling between
planes can be studied by testing the nonlocality of the
resistance in a narrow region around T„ following the
same procedure as [3] for YBazCu307 in a magnetic field.

In conclusion, we have shown that at zero magnetic
field there is a coupling between the superconducting
planes around the 3D XY phase transition. This con-
stitutes the essence of the effects observed in the zero
field transformer experiments [5]. The coupling between
planes is due to correlated segments of thermal vortex ex-
citations. The role of the anisotropy in the resistivity is
to cause a drop in the secondary voltage at temperatures
above T, . It also produces a very inhomogeneous dis-

tribution of currents in the sample, and thus the results
depend on the location of the voltage contacts, especially
close to the sample edges. The crossover temperature TKT
[11]does not seem to be relevant to our results. To fully
understand all these phenomena, further detailed studies
of the current driven 3D XY model and extensions to in-
clude a magnetic field are in progress.
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