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Transformer Configuration in Three Dimensional Josephson Lattices at Zero Magnetic Field
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Recent experiments on Bi;Sr,CaCu,0g-, superconductors at zero magnetic field have been performed
with a transformer configuration of contacts. We interpret the experimental data on the basis of large-
scale Langevin dynamical simulations of a three dimensional (3D) Josephson lattice with a current bias
through a single plane. We show that the experimentally observed effects can be attributed to linking
thermal vortex loop excitations that cause voltages in neighboring superconducting planes to lock in a
narrow temperature range near the 3D phase transition.

PACS numbers: 74.50.+r, 64.60.Cn, 74.60.Ge, 74.72.Hs

Giaever, in a pioneering “dc flux transformer” experi-
ment showed that, with vortices linking two superconduct-
ing films, a current drive in the upper film induces locked
voltages in both films [1]. A similar contact configura-
tion has been used recently to study nonlocal transport
properties of high-7, superconductors [2—6]. In these ex-
periments a current was fed into one ab face of a sin-
gle crystal, and both the primary voltage drop (across the
same face) and secondary drop (across the opposite face)
were measured. Most of the experiments were performed
in a magnetic field both in Bi;Sr;CaCu,0, [2,6] and in
YBa,;Cuz 05 [3,4], to probe vortex motion along the crys-
tal ¢ axis through the correlations between the primary
and secondary voltages. The experimental results have
been interpreted as due to a nonlocal conductivity [7] in
the linear regime of the vortex liquid, and due to flux-line
cutting phenomena [8] in the nonlinear regime below the
irreversibility line. Recently, Wan et al. [5] have con-
ducted transformer experiments at zero magnetic field in
Bi,Sr,CaCu,05-y, finding a peak in the secondary volt-
age around the critical temperature 7,.. Here, we provide
a theoretical interpretation of this latter experiment.

The high-T,. superconductors can be modeled by as-
suming that, below a mean field transition temperature
TMF | the relevant physics is given by the thermal fluc-
tuations of the phase € in the superconducting order pa-
rameter ¥ = |W|e’?. A lattice version of this approach
leads to the anisotropic three dimensional (3D) XY model
or Josephson lattice [9-13], the anisotropy arising from
the layered nature of the high-7, superconductors. This
model has been extensively applied to the study of the
thermodynamic phase transitions at both zero [9-11] and
finite magnetic fields [12] in high-7, superconductors.

The Hamiltonian of the 3D anisotropic XY model is

H = —ZJ# cos A, 6(r), )
ru

where 6(r) is the phase a‘t the 3D lattice site r, A, 6(r) =
O(r + u) — O(r), and u = %,9,2. The anisotropy is
g =J./J, withJ, = J, = Jyand J, = J,.

0031-9007/95/75(4)/717(4)$06.00

To study a current-driven sample, the flow of cur-
rent has to be modeled taking into account local dissi-
pation and that a time dependent phase induces a voltage
V = (®y/27) (dB/dr), with &y = h/2e, the quantum of
flux. This is usually studied with current-conserving over-
damped Langevin dynamics [13]. The current 7, (r) flow-
ing in each bond of the 3D cubic lattice is taken to be

®y dA,6(r)
27R, dt

+ 77;/.(1'9 1), (2)

with I, = 2mJ,/®o, and R, the resistance along the
w direction. We take Ry = R, = R, R, = R, and
the anisotropy gg = R|)/R .. We assume g; = gg =
g, for simplicity, and we will study g = 0.1 here. The
Langevin thermal noise term is assumed to have corre-
lations {7, (r, )1, (r',1')) = (2kpT /R )8y 1 6(t —
t'). Together with the condition of current conservation,

Z[lu(r) - I,u,(r - ,LL)] = A,lL I,U.(r) = Iext(r); 3)
®

I,(r) = + I, sinA,6(r)

this determines the full set of dynamical equations. The
boundary conditions, for the transformer configuration,
are open along the x and z directions, periodic along
the y direction, and current driven in the “top” plane
z = 1:1(0,y,1) = -Iext(Lx»_Ya 1) = Iand Ix¢(r) = 0
otherwise. From (2) and (3) we obtain

do(r) 2w ,
dr @y Z_G(r,r)
290 8H
X / + = —_
[ foe) + 2T

Here the 3D Green’s function is the solution of
A, (1/R,)A,G(r,x') = 8;p under the given boundary
conditions. Thus the information of the anisotropy in the
resistance network is contained both in G(r,r’) and in
the correlations of 7,(r,t). We simulate Eq. (4) both
with a Fourier accelerated algorithm [14] and with a

A, n#(r’,t)] @)
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molecular dynamics algorithm [15], previously used in 2D
networks. We integrate (4) with the Helfand-Greenside
[16] algorithm with Az = 0.057 (7 = Do/27R 1))
and the integration time ¢ = 10*7 after a transient of
2 X 10°7.

We study first the equilibrium behavior. We obtain
the 3D critical temperature 7. by calculating the helic-
ity modulus Y4 along the xy directions [10] (see Fig. 1).
We obtain 7, = 1.33 for a 48 X 48 X 8 lattice, with
periodic boundary conditions in order to obtain better sta-
tistics. (Temperatures are normalized by J|/kg.) Re-
cently, Chattopadhyay and Shenoy [11] have shown that,
for g; =< 0.25, below the 3D T, there is a crossover tem-
perature Tt reminiscent of the Kosterlitz-Thouless phase
transition in 2D [17]. We found this crossover temper-
ature by studying the nonlinear 7/-V characteristics with
homogeneous bias current, with the same procedure as in
the experiment of [5]: Tkt = 1.0. We do not see evi-
dence of structure in the helicity modulus at Txr [11].
Here, we have neglected the temperature dependence of
Ju, which is J,(T) ~ TMF — T for T ~ T.. The effect
of a T-dependent J,, is to “squeeze” the temperature in-
terval around T., making Txt and T, very close, as in the
experiment [5]. By neglecting such 7' dependence we can
conveniently separate the effect of both temperatures.

0.6 10.004
10.003
0.4 3
e 10.002 3
L ] >
0.2 ]
20.001
0.0 10.000
04 =
& 10.001%
| 1 >
0.2f
0.0 . . Jo.000
1.2 T
Tcl
FIG. 1. Left scale, dotted lines helicity modulus without a

current bias Y, and with a bias in the transformer configuration
Y, calculated along the x direction. Right scale, full lines:
voltages v¢(z) as a function of temperature 7 (normalized by
Jy/kp), for € = 6. The voltages decrease from the top plane
z = 1 to the bottom plane z = L,. (a) 48 X 48 X 4 lattice.
(b) 48 X 48 X 8 lattice. Bias I = 0.1/.. Numerical results
taken in steps of A7 = 0.04. Error bars are shown on the
z = L, curves.
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Under the transformer configuration, a bias current
is applied in the top plane and voltage differences
are measured in the top (z = 1) and bottom (z = L;)
planes. We calculate the average normalized voltages
v(x,z) = (7/Ly) > {0(x,y,z,1)), where (---) indicates
thermal (time) average. Because of the inhomogeneous
bias, the voltages depend strongly on (x,z), and there-
fore the results depend on where the voltage differ-
ences are measured. We study ve(z) = v(L, — €,2) —
v(l + €,z). In the high-temperature limit 7 > T, the
behavior is purely resistive, and the local voltage dif-
ferences v, (r) = A,v(r) are simply given by v,(r) =
Qm7/®o)A, D G(r,r')ex (r'), which explicitly shows
the role of G(r,r'). In this case it is easy to see that most
of the current flow between planes (along the z direc-
tion) occurs in a small region close to the edges. There-
fore v¢(z) depends strongly on € for € < L,gg/, and
otherwise is approximately € independent. The voltages
decrease exponentially along the z direction as v¢(z) ~

. 1/2
exp(—2z/zese) With zegsr = Ligr /7.

In Fig. 1 we show the voltage differences wv¢(z) in
all the planes, as a function of 7 for samples of size
L, = Ly, = 48 and increasing length along z, for L, = 4
and L, = 8. The bias current is applied only along
the top plane, and in this case is / = 0.11.)]. We see
that at a temperature T.;(/,L,) < T, dissipation begins
in the bottom plane. This is close to the temperature
where the helicity modulus Y, of the current driven
lattice, calculated along the x direction [18], vanishes;
see Fig. 1. Here T.(0.1,4) = 1.23, T.;(0.1,8) = 1.27.
We find that T.; — T, for I — 0 or for L, — oo, for the
currents and sizes we studied. The top plane begins to
dissipate at a much lower temperature, depending strongly
on € (decreasing for increasing €, and approaching T),
meaning that it is due to the onset of dissipation in
the junctions close to the edge of the sample. Figure 1
shows that while only the z = 1 plane is driven voltages
are induced in all the planes. Within some temperature
interval T,; < T < Ts(z), there is a tendency for voltages
to crowd together or lock within the error bars (shown
for the z = L, curve). The largest unlocking temperature
where v(L,) # v(L, — 1) within the statistical error
Ts = Ts(L,) is shown. This voltage-locking tendency
away from the current-driven plane is the essential aspect
of the transformer effect. When we increase the number
of planes from L, = 4to L, = 8 [see Fig. 1(b)], we see a
tendency that the voltage v¢(L,) will drop after T > T.
(Also, by increasing L, the system becomes more three
dimensional; see, for example, Schmidt and Schneider
[10].) We also calculated the average normal current
.z,z+1 .z,z2+1 .
iy and Josephson current iy flowing between
planes z,z + 1. An analysis of y(z,T) = i,ZV’Z+1 ij’”l
for z > zesr shows that vy = 0 below T.;, 0 < y < 1 for
T, < T < Ts, and 7 increases sharply above Ts. Thus,
the dissipation in the lower planes for 7. < T < Tgs
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is mainly due to vortex loop motion and not to normal
current leakage.

Our interpretation of these results is as follows. The
thermodynamic phase transition in the 3D XY model
is driven by multiplane vortex loop excitations of size
&- ~ (T, — T)™” that “blow out” in a narrow interval
around 7, [9]. For T, < T < T, there are vortex loops
or lines that extend across a finite sample, with “stiff”
regions of size £, ~ (T — T.)””, capable of inducing
correlated voltages in the lower planes if the top plane is
current driven. These induced voltages will rise as vortex
fugacities rise with 7', and may fall as stiffness decreases.
(This simple scenario is masked for planes closer to
z = 1 by single plane excitations [11] on scales rg ~
gj_l/z, and interplane current leakage effects.) Above
Ts, where normal current flow dominates [£4+(T) <
Zett], ve(L;) drops from we(L,) = wve(L, — 1) towards
its normal state value v¢(L;) = ve(L, — 1)exp(—1/zess).
This last effect is stronger for increasing L, [compare
Figs. 1(a) and 1(b)] or smaller gg. Therefore, we expect
that the weak peak seen in Fig. 1(b) will grow with
increasing sample thickness or with stronger anisotropy in
the resistivity. This may explain the experiment of Wan
et al. [5]. There, they observed a peak in the secondary
voltage v¢(L,) for temperatures between 85.5 and 87.5
K and their 3D critical temperature was 7, = 86.4 K.
In their case the Kosterlitz-Thouless crossover was very
close to the peak but clearly below it, at Txt = 84.3 K.
As is clear from our results Tkt plays little role in the
peak in ve(L,).

To verify this scenario, we have calculated the
distribution of the vortex segments defined as
N.(R) = —A¥ nint[A,0(r)/27], with (R, u) label-
ing the dual lattice site R oriented along the w direction.
The lattice curl operator is, for example, A3 X ¥, (R) =
WY (r) — W(r + 9) + ¥y(r + &) — ¥,(r), and nint (x)
denotes the nearest integer part of x. The z component
N,(R) can be either positive or negative (NZ(:) = =*1).
Vortex loop closure implies > N{*(R) + N{(R) = 0,
so we evaluate the separate correlations C)(R;ry, z) =
(Nz(i)(R”,LZ)NZ(i)(R” + 1, L, — z)), with rj = (x,y).
C*) depends on R| because of the lack of transla-
tional invariance: We average over 0 < R, < L, and
¢ <R <L,— ¢ The N segments connected
on the same loop are not necessarily right on top of
each other in the different z planes. Therefore, we
sum over rj within a cylinder |rj| < p. Substracting
the independent thermal averages A™)(Ry;r,z) =
(NEOR), LOXNSE Ry + 1y, L, — 2)),

1 p L.~ L,
S B CcHN(R 1y,
cep(2) L - 201, x,y=0R,§,:€R,§v:l (Ry;1y,2)

- AR 2) + COM®Rysry,2)

— AD Ry, 2).
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FIG. 2. Correlation function y(z,T), defined in the text, as a
function of z: T = 1.1 (dotted line), T = 1.31 (full line), and
T = 1.5 (dashed line). Inset: y(z,7T) as a function of T, for
z = 1 (full line), z = 2 (dashed line), and z = 3 (dotted line).
Lattice size is 48 X 48 X 8.

The dimensionless ratio x¢,,(z) = c¢,(z)/ce,(0) is thus a
measure of the “stiffness” of the vortex segments, unity for
rigid rods. In Fig. 2 we plot x¢,(z,T) for€ = 8, p = 3,
and for three different temperatures: below, at, and above
the transformer region. In the inset of Fig. 2 we show
x(z,T) as a function of T for z = 1,2, and 3. It shows
a peak at 7, in a temperature interval coinciding with
the region where we found a transformer coupling effect
in Fig. 1, thus confirming our interpretation. This makes
evident the strong correlations between vortex segments in
the transformer region. In Fig. 3 we show the distribution
of N,(R) at temperatures below and at the transformer
region. For T < T, there are only small vortex loops, and

FIG. 3. Distribution of vortex segments in the Josephson
lattice of size 48 X 48 X 8, with a bias / = 0.1/, along
the x direction in the plane z = 1. Top: T = 1.15. Bottom:
T = 1.31. Some vortex loops or lines that extend from the
bottom to the top plane are highlighted.
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therefore no coupling between planes. ForT.; < T ~ T,
there is a proliferation of loops of different sizes and
shapes. In the figure we highlight some vortex loops or
lines extending from the bottom to the top plane.

In the experiments on the flux transformer effect
in an external magnetic field, the results have been
interpreted as evidence of a nonlocal resistivity in the
system [3,7]. In our model this means that the average
voltage drop in a given lattice link will be V,(r) =
Dew Ry (e, x)(r'). It is easy to show that in the
Josephson lattice this is given in general by

d(sin A ,0(r))
R, x)=R,| 6, ,6cr — I. —_—t ]
jTn ( ) M': pou' Orr M alﬂ/(r’)

(5)

Clearly the nonlocal part becomes relevant as soon as
there are correlations between the (r), i.e., vortex loops
occur. One can estimate that the Fourier transform of
the resistance for small wave vector g will be of the
form R(g) ~ Ro + R,(gé)?, thus the nonlocal part is
relevant for large & as we discussed previously.

In our calculations we have neglected the magnetic
interactions between planes. They are not relevant to
the essential nature of the transition at 7.. However, in
the experiment of Wan ef al. [5], they are present since
the magnetic penetration depth is smaller than the sample
size Az, < Ly. This will result in a stronger effective
interaction between vortex segments in different planes,
making the vortex loops “stiffer,” and thus the coupling
effect will be enhanced when compared to our results
with the 3D XY model. The magnetic interactions and
screening effects are qualitatively relevant, however, for
the interpretation of experiments at weak magnetic fields,
H =< H_j, like the ones recently conducted in Ref. [6].

The transformer effect discussed here should also be
present in isotropic or weakly anisotropic systems, like
YBa,Cu3z05. The difference is that there will be a less
prominent drop in v¢(L;) above T., probably similar
to the one shown in Fig. 1(b). The coupling between
planes can be studied by testing the nonlocality of the
resistance in a narrow region around 7., following the
same procedure as [3] for YBa;Cu30O7 in a magnetic field.

In conclusion, we have shown that at zero magnetic
field there is a coupling between the superconducting
planes around the 3D XY phase transition. This con-
stitutes the essence of the effects observed in the zero
field transformer experiments [5]. The coupling between
planes is due to correlated segments of thermal vortex ex-
citations. The role of the anisotropy in the resistivity is
to cause a drop in the secondary voltage at temperatures
above T.. It also produces a very inhomogeneous dis-
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tribution of currents in the sample, and thus the results
depend on the location of the voltage contacts, especially
close to the sample edges. The crossover temperature Tkt
[11] does not seem to be relevant to our results. To fully
understand all these phenomena, further detailed studies
of the current driven 3D XY model and extensions to in-
clude a magnetic field are in progress.
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