
VOLUME 75, NUMBER 4 PH YSICAL REVIEW LETTERS 24 JvLv 1995

Coulomb Blockade Oscillations of Conductance in the Regime of Strong Tunneling
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We study the transport through a quantum dot coupled to two leads by single-mode point contacts.
The linear conductance is calculated analytically as a function of gate voltage and temperature T in
the case when transmission coefficients of the contacts are close to unity. As a function of the gate
voltage, the conductance shows Coulomb blockade oscillations. At low temperatures, the off-resonance
conductance vanishes as T2, in agreement with the theory of inelastic cotunneling. Near a resonance,
the low-energy physics is governed by a multichannel Kondo fixed point.

PACS numbers: 73.20.Dx, 73.40.Gk

The Coulomb blockade of tunneling has recently be-
come a subject of intensive studies [1]. It is usually ob-
served by measuring the conductance of a system of two
bulk electrodes connected by tunnel junctions to a small
conducting island. Tunneling of an electron into the is-
land is accompanied by the increase of the energy of the
system by Ec = e /2C, where C is the capacitance of
the island. At low temperatures T «E~ this leads to
the suppression of tunneling. This phenomenon is due to
the discreteness of charge in the island, and can be sup-
pressed by tuning a gate voltage to the point where the
energies of the states with n and n + 1 electrons in the
island are equal. At these points the energy gap related to
the charging energy vanishes, and one observes peaks in
conductance as a function of the gate voltage.

A popular realization [2] of the conducting island
is a quantum dot, Fig. 1, created artificially in a two-
dimensional electron gas (2DEG), and connected to the
large areas of 2DEG (the leads) by quantum point contacts
(QPC). In such a system, the transmission coefficient
2 of a QPC connecting the dot and an external lead can
be controlled by changing a gate voltage. This opens a
possibility for studying the Coulomb blockade effect in
the strong-tunneling regime of 2 ~ 1, where one naively
expects that the Coulomb blockade may not be observed
because the number of electrons in a quantum dot is
no longer well defined. Recent experiments indicate,
however, that even when X is close to 1 the conductance
shows periodic oscillations, although the peaks are not
well separated [3,4]. Most of theoretical work has been
concentrated on the case of weak tunneling ('E « 1),
and only the equilibrium thermodynamic quantities have
been discussed in the strong-tunneling limit [5]. The
aim of this paper is to develop a theory of the transport
through a quantum dot in the strong-tunneling regime.
We show that in the low-energy limit the conductance
is renormalized to zero off resonance, and to —e /h on
resonance, yielding clear Coulomb blockade peaks even
for the strong-tunneling case. We also derive analytic
expressions for the conductance in some interesting
limiting cases.

In the weak-tunneling limit there are two different mech-
anisms of low-temperature conductance. One contribution
is due to real transitions of electrons between the leads and
the dot [6]. If the gate voltage Vs is not equal exactly

(n}to the nearest resonant value Vs, an energy cost AE ~
(n}

Vg Vg is associated with such a transition. Since only
an exponentially small fraction of electrons have energy
AE at low temperatures, the conductance decays exponen-
tially away from the peak:

1 Gt. GR AE/T
G =—

2 Gt. + GR sinh(AE/T)

Here GI and G~ are the conductances of the left and right
QPCs. At very low temperatures another mechanism of
transport through the dot dominates [7]. This mechanism,
commonly referred to as the inelastic cotunneling, corre-
sponds to the second-order tunneling processes. At the
first step an electron tunnels from the left lead to a virtual
state in the dot, and the system acquires charging energy
-AE At the seco.nd step, another electron tunnels from
the dot to the right lead, thus finishing the process of the
charge transfer and restoring the initial charge of the dot.
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FIG. 1. Schematic view of a quantum dot connected to two
bulk 2D electrodes. The dot is formed by applying negative
voltage to the gates (shaded). Solid line shows the boundary
of the 2D electron gas (2DEG). Electrostatic conditions in
the dot are controlled by the voltage applied to the central
gates. Voltage V~, applied to the auxiliary gates controls the
transmission probability through the left and right constrictions.
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In any such process, the original electron decays into three
quasiparticles (an electron in the right lead and an electron-
hole pair in the dot). Similar to the problem of decay of a
quasiparticle in Fermi liquid, this means that the tunneling
rate is proportional to T in the low-temperature limit,

l, T«&E, (2)
GLGR( T I

6Gl] & AE)

where GO = e /h. In the case of weaktunneling, GLR «
Go, the cotunneling mechanism gives only a small correc-
tion to the peak value given by Eq. (1). However, it dom-

inates away from peaks at T ~ 0.
At low temperatures and at the gate voltage near the

peak position, i.e. , at T, AE « e /2C, the tunneling ma-

trix elements are renormalized and grow logarithmically
[8]. This can be seen in the following way [9]. On res-
onance, the state with n electrons in the quantum dot and
that with n + 1 electrons have the same electrostatic en-

ergy, i.e., AE = 0. These two states can be regarded as

up and down states of a fictitious impurity "spin" S = 2,
and we may discard all other states. If we also ascribe up
(down) spin to the electrons in the leads (dot), then each
tunneling event Aips spins of both the tunneling electron
and the impurity. Thus the tunneling Hamiltonian can be
interpreted as spin-Hip scattering on an impurity. Hence
the tunneling problem is mapped to an anisotropic multi-

channel Kondo problem, in which the number of the chan-
nels (flavors) is equal to the total number of 1D modes in
all the QPCs.

In the leading logarithmic approximation [8,9] one
can substitute into Eq. (1) the renormalized GL and GR
obtained from the scaling equations for the anisotropic
Kondo model,

(3)
GL(R

GL(R)
cos GL~R~/27r2Gp In(EL /T)

If GL and GR are equal, they grow together under the
renormalization, and the peak conductance will be of
the order of Go at low temperature [10]. When GL is
initially smaller than GR, however, they first increase
together according to (3), but then GL starts to decrease
to zero, whereas GR keeps increasing to Go. This
is because the fixed point of the multichannel Kondo
problem is unstable against a perturbation breaking the
flavor symmetry [11]. Thus the total conductance in this
case shows a nonmonotonic temperature dependence and

goes to zero in the low-temperature limit.
Below we concentrate on the case of strong tunnel-

ing and find much stronger renormalizations of conduc-
tance than the ones given by Eq. (3). The system we
study is a quantum dot connected to two external leads

by single-mode QPCs. We consider the low-temperature
case T «F~, but assume that the level spacing in the dot
is much smaller than the temperature. The latter assump-
tion is usually satisfied for reasonably large quantum dots.
It means that the phase coherence in transport of electrons
from one QPC to the other is destroyed by thermal fluc-
tuations, and one can neglect the corresponding processes
of elastic cotunneling [7]. Since the transport through a
single-mode QPC is essentially 1D, we may introduce for
each QPC an effective 1D model with a linearized disper-
sion relation [12]. We further assume that the Coulomb
repulsion can be described by the charging energy Q /2C
because of good screening in the quantum dot, and use
pointlike backward-scattering potential to model reAec-
tion at the QPCs. The two 1D systems are coupled by
the charging energy. The effective Hamiltonian is

H = vF

o.=T,l

dx y y l//J l (x) (ia, —kF)l/J~ l (x) —p) 2 (x)(ia, + kF)i/JJ2 (x)] +t . (0 —eN)'

j =L,R o-=T,l
2C

+ ~F P I~LI AL, ],~(0)OL2o(0) + QL2o(0)l/L, l, ~(0) +-I~RI l/R, l,o(0)OR2o(0) + WR2, (0)WR, ],o(0) (4)

where QL]l2l (x) is the field operator of a left-going
(right-going) electron near the left QPC and l/jR ](2l (x) is
that of an electron near the right QPC; the dimensionless
parameter N is proportional to the gate voltage. We
associate the centers of the QPCs with points x = 0,
meaning that electrons in the dot are described by pL ](2l
atx ) 0 and by pR ](2) atx & 0. Thus the charge in the
quantum dot is given by

I,d, o. & L,d, o
d=1,2 o-=T,l

+ ~ l/R, d, a( X)PRdo. ( X), ,

where: 0: denotes normal-ordered operator O.
We first consider the case of spinless fermions, which

turns out to be equivalent to the two-channel Kondo

problem. This case may be realized experimentally by
applying a magnetic field parallel to the 2DEG to allow
only spin-up electrons to transmit through the QPCs.
Following the standard procedure [13], we bosonize the
Hamiltonian (4):

H = dx g (—[B„tj,(xj] + vrlII, (xj] I2 J=
+ ', [@.(0) —O.(0)-

+ cos[2$L(0)] + cos[2@R(0)], (5)
DI~LI

where Pi(x) is a phase field describing charge density
fluctuations, [@~(x),IIL(y)] = i 6, l, 6(x —y), and D is
the high-energy cutoff (bandwidth). We assume that the
reflection amplitudes are small, lrL(Rll « 1.
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The current through the quantum dot is
I = (e/2vr)B, [pi (0) + QR(0)], and the conductance
G is calculated using a Kubo formula:

problem to the following form:

H = dkfgkczcI, —[Ack(c + c ) + H.c.]), (8)

1
G = Re lim

co~0 Fl Cap

e' '([I(t), I(0)])dr . (6)

Up to the second order in rz~~~ we obtain

G = 1—ez ( BIO(N) l
2h& 4T )'

1o(N)=, [I I +I I +2I II I o(2 N)],
2y Fc

(7)

where y = e~, with C = 0.5772. . . being Euler's con-
stant. We see that the second term diverges at low temper-
ature [14],unless IrL I

=
I rR I, and N is a half integer [15].

This indicates that the higher-order terms in I r I should be
taken into account in a proper way. Since the charging
mode @R

—$1. is massive due to the charging energy, we
may integrate it out to obtain an effective Hamiltonian for
the current mode $1 + pR. The resulting Hamiltonian is

equivalent to that of a single impurity in the g =
2 Lut-

tinger liquid [16,17], which can be solved exactly [16,18].
We use an alternative exact solution [5] and fermionize the

where ck and c are fermions, $t, = vFk, and the param-
eter A = (yvFEc/2' )'I (IrL!e ' + IrR!e' ). The
current is now given by I = (evF/27r) f: ck, ck, . X
dk~ dkz. Since the Hamiltonian (8) is quadratic, one can
easily find the conductance by substitution of I into the
Kubo formula (6),

2

2h
df I'0 (N)

E2 + I o(N)
(9)

where f(E) = (e Ir + 1) '. We see that even for half
integer N, i.e., on resonance, the conductance vanishes
as T if I rL I 4

I rR I. In the off-resonance case the
conductance also vanishes as T, in agreement with
the result (2) of the inelastic cotunneling theory. On
resonance, at IrLI = IrRI, the conductance equals e /2h,
see Fig. 2. As expected, the conductance (9) coincides
with the one for a single impurity in the g =

2 Luttinger
liquid [16].

We next take into account the spins of electrons. The
bosonized form of the Hamiltonian (4) is

g 1

—I'&*0,..(*)P + I&, ..(~)P + —I~*4,..( H' + K&,.*(~)j')
LR

+
~ O' R..N) O'I .(o) &i

+ cos[v 2$t, ,(0)]cos[v 2/1, (0)] +2& lr, I 2& lrR I

cos[V 2@R,(0)]cos[v 2@R,(0)], (10)

!

where P~, (x) and cb~, (x) are the phase fields for the
charge and spin density fluctuations. The electric current
is given by I = (e/~2~)B, [@L,(0) + @R,(0)]. Up to
the order

I
r I the conductance is

G= —i1-
h

~

The term proportional to Ir! has no dependence on N
and diverges as I/JT at T ~ 0, indicating that Irl I

=
I rR I

= 0 is an unstable fixed point even on resonance, in
contrast to the spinless case discussed above. If IrLI =
IrR I

) 0, and N is a half integer, then the system will be
renormalized toward the fixed point of the four-channel
Kondo problem. In fact, after a series of transformations
we could map the Hamiltonian to the one which appeared
in the study of the four-channel Kondo problem [19].
Unfortunately, in this case we cannot sum up analytically
all the higher-order divergent terms.

On the other hand, we can still find the low-temperature
asymptotics of the conductance in a realistic case when
the reflection amplitudes rI and rR are not precisely

equal. In this case, as we already mentioned above,
one can use mapping to the multichannel Kondo model
to identify the stable fixed point of the problem. Since
the channel anisotropy is a relevant perturbation, in
the low-energy limit the larger of the two refl.ection
amplitudes, say, I rr I, is renormalized to unity, whereas
rR is renormalized to zero. Thus it is meaningful to study
the case where the transmission amplitude tz of the left
QPC and the reflection amplitude rR of the right QPC
are very small. This limit can also be easily realized
experimentally by tuning voltages on the gates controlling
the QPCs, Fig. 1.

We will calculate the conductance in the lowest order
in the tunneling probability through the left barrier. The
problem is therefore to calculate the renormalization of
the tunneling density of states for the left-lead electrons.
The renormalization is due to the electrostatic coupling
between the two 1D electron systems describing the two
QPCs; see Eq. (4). When an electron tunnels through the
left barrier, the number of particles in the dot changes
by 1, which means that the system of electrons of the
right QPC is no longer in the ground state. This leads
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'""+ 'R. K(.),G = dto
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