
VOLUME 75, NUMBER 1 PH YSICAL REVIEW LETTERS 3 JULY 1995

The Shape of the First Collapsed Objects
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In the early seventies, there was a conjecture (based on the Zel'dovich approximate solution) that
the first collapse of a self-gravitating dustlike medium (appropriate approximation for nonbaryonic dark
matter) results in the formation of a "pancake" object that is a thin surface. Recent works cast doubt on
the Zel'dovich conjecture, suggesting that the first collapse might be pointlike or filamentlike rather than

pancakelike. Our N-body simulations show first pancake collapse. We can reject with 97% confidence
the Bayesian prior that the other kinds of collapse are more or equally probable.

PACS numbers: 98.65.Dx, 95.30.Sf, 98.80.Hw

In the evolution of gravitational clustering in the expand-
ing universe, it has gradually been recognized that the first
collapse is usually anisotropic. This has important conse-
quences for the formation of all objects by gravity, includ-

ing gas clouds, stars, galaxies, and superclusters. It may
be visible today only in superclusters, which are just col-
lapsing now.

The known exact solution obtained for the spherically
symmetric, nonrotating, pressure-free case (e.g. , [1])pre-
dicts two types of collapse from rest. If the initial den-
sity is monotonically decreasing then the first collapse is
pointlike toward the origin. However, if the initial den-
sity is nonmonotonic then the first collapse is shell-like.
Considering a uniform, nonrotating, pressure-free spher-
oid, Lin, Mestel, and Shu [2] found that it collapses to-
ward either a disk or a spindle depending on whether it is
oblate or prolate at the initial time.

Zel'dovich [3] proposed an approximation for a generic
initial perturbation which predicts that the first collapsed
objects have a pancakelike shape. Gurevich and Zybin
[4] revisited the issue and concluded that the nondis-
sipative gravitational collapse of a generic perturbation
results in the formation of a stationary dynamical struc-
ture with a pointlike singularity at its core p ~ r
Recently, Bertschinger [5] and Bertschinger and Jain [6]
proposed a purely local gravitational instability solution
based on general relativity which implied that prolate col-
lapse to filaments comes first. Kofman and Pogosyan
[7] and Bertschinger and Hamilton [8] showed that this
solution had neglected certain terms of the same or-
der as others included in it which may be justified in
ultrarelativistic cases, but not in the Newtonian limit.
The difference between the collapse in dustlike matter
in Newtonian and ultrarelativistic cases was stressed by
Zel'dovich and Novikov [9]; see also Matarrese, Pantano,
and Saez [10]. This provides a renewed justification for
the neo-Newtonian approach generally used for study-
ing low-amplitude cosmological perturbations inside the
horizon.

However, as noted by Bertschinger and Hamilton [8] it
does not resolve the question of whether pancakes or fila-

ments form first. Although the Zel'dovich [3] approxi-
mation (ZA) predicts pancakes, this approximation is not
exact in three dimensions. It is known, for example,
that collapse in nonlinear gravitational clustering simula-
tions proceeds faster than ZA predicts. It is therefore im-

portant to determine whether the quasi-two-dimensional
structures predicted by ZA really occur.

One should distinguish between the two statements we
might make: (1) The first collapse is always pancakelike.
(2) The first collapse is usually pancakelike but could be
filamentlike in some cases. In this paper, we present
evidence for the second (weaker) statement based on
numerical simulations. The initial conditions we set up
are of a generic type, which means that a smooth small
arbitrary perturbation does not change qualitatively the
type of initial condition in any sense.

We examined an ensemble of five W-body simulations
on a 128 particle-mesh gravitational clustering code with
periodic boundary conditions and random Gaussian ini-
tial perturbations. At very low amplitudes, the ZA we
used and the Eulerian linear perturbation theory of the
growing mode are essentially indistinguishable. We also
stress that using shot noise with a dying mode component
[11] or a logarithmic distribution of modes [12] has not
made noticeable differences. Further details on simula-
tion methods can be found in [13]. The initial conditions
corresponding to the growing mode were constructed in
four realizations with initial fluctuations of wave num-
ber 1 through ~3 in units of the fundamental mode of
the box. Thus, the minimum wavelength present in ini-
tial conditions is 74 mesh units. A smaller upper bound
on wave number would cause alignment with coordinate
axes. An additional simulation with initial wave num-
ber range 1 through 3 was performed as a check (simula-
tion 1 in Table I). We found nothing special in this case.
All simulations were started with rms density fluctuation
o. —0.03—0.04 in order to allow time (an expansion fac-
tor of —17) for transients to die out and the full growing
mode including nonlinear effects to establish itself. Two
simulations (2 and 4), as a check, started with half the ini-
tial amplitude and ran for twice the expansion factor.
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TABLE I. Information on the objects ins in the five simulations. (a)

Simulation

1

2
3
4
5

Thickness
(mesh units)

0.1

0.5
0.6
0.8
0.8

Width
(mesh units)

3.5
5

32
7.5

17

Length
(mesh units)

8
16
37
48
37

30

20

10
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FIG. 2. Two thin slices (2 mesh units) approximately through
the center of the pancake orthogonal to (a) z axis: 15 ~ z ~ 17;
(b) y axis: 10 ~ y ~ 12.
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In contrast to Fig. 2, Fig. 3 shows al/ particles in
thin slices orthogonal to the principal axes of the initial
deformation tensor at the largest eigenvalue. One can
easily see the difference between the density distributions
(Fig. 3) and the shape of the collapsed region (Fig. 2).
All the statements about the shapes of the first collapsed
regions derived from ZA refer to the shapes of collapsed
regions (Figs. 1 and 2) which may be similar to but not
the same as the density distributions (Fig. 3), especially in
cases where the resolution is not sufficiently good.

Our simulations suggest that the first stage of collapse
of a generic gravitational system is usually to a thin sheet
as suggested by ZA. (Obviously we cannot say anything
about the evolution of shapes between the last "uncol-
lapsed" and the first "collapsed" stages, but we stress that
our time steps are shorter relative to the characteristic for-
mation time of the structures under consideration than
any simulations to date. ) Superclusters, now experienc-
ing their first collapse, should include sheetlike structures.
Filaments (another type of generic structure [14]) may
be easier to see due to their higher density contrast and
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FIG. 3. The mass distribution in thin slices orthogonal to
three principal axes: (a) z axis: 15 ~ z ~ 17; (b) y axis:
10 ~ y ~ 12; and (c) x axis: 112 ~ x ~ 114.
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possible gas cooling effects [15], but they should be
second generation objects formed by Rows inside sheets.

In the presence of small-scale perturbations in the ini-
tial spectrum (which is the most likely case in cosmol-
ogy) these structures are not as smooth as the pancakes
discussed in this paper. As mentioned before, there is
a theoretical question concerning the type of the first
collapse in a dustlike medium. Our results should not
be interpreted as totally excluding first collapse to fila-
mentlike structures. It is well known from second order
perturbation theory that the rate of collapse along one prin-
cipal axis depends on the rates of collapse along the other
principal axes, which may change the type of collapse in
some cases. On the other hand, the general solution with
the maximal number (eight) of physically arbitrary func-
tions of three variables in a dustlike medium suggests grav-
itational collapse is pancakelike [16,17]. Katz et al. [18]
state that "the first objects form in filaments from almost
two-dimensional collapses in agreement with the approxi-
mate analytic theory of Bertschinger and Jain, " which ap-
pears to contradict our results. We did not investigate all
options for Gaussian initial conditions. Our initial con-
ditions were particular random realizations of Gaussian
initial conditions, with formally k ' power spectrum of
density fluctuations in the range of kf ( k ( +3kf (or 3kf
in one case). But we stress that they were mathematically
generic.

We have presented detailed results of the simulation
of one pancake. However, we studied five realizations
of the initial conditions. All showed similar pancake-
like structures (sometimes elongated); see Table I where
we list the dimensions for the first collapsed objects in
our first five realizations. We find neither a single fila-
mentlike collapse in our simulations (filaments would be
expected on the basis of the hypothesis of Bertschinger
and collaborators [5,6]) nor pointlike collapse [4]. If we
use a prior hypothesis that the ZA and HA [5,6] descrip-
tions of first collapse are equally probable, we can re-
ject this on the basis of our experiments with 97% con-
fidence. Alternatively, we may assume pancakes and
other structures form with some probabilities and try to
estimate that probability. A sequence of five pancakes
would be more probable than the sum of all other se-
quences' probabilities if the a priori probability of a
pancake were 87%. Our objects are all smaller (much
smaller in thickness) than the minimum wavelength in the
initial perturbations, and thus represent the first genera-
tion of collapsed objects. Objects formed on any scale in
heirarchical clustering N-body simulations, such as those
of Katz et al. [18],are larger than the Nyquist wavelength
of the initial spectrum, and therefore a later generation and
irrelevant to the question studied here. However, such
simulations might be expected to show one-dimensional
collapse of the objects where the things are just becom-
ing mildly nonlinear. Recently, observational evidence
has appeared to suggest there are sheetlike neutral hydro-
gen clouds at moderate redshift [19]. Quantitative evi-
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dence for pancake-like morphology for such objects (as
well as filaments existing at later stages of dynamical evo-
lution) has been found in hierarchical clustering simula-
tions [20]. However, this technique does not measure the
distance between caustics, discussed in this paper, and does
not take into account the thin bowlike shape of the first
pancakes. The formation of the filamentlike structures, as
well as compact clumps of higher density contrast than in

pancakes, in the frame of ZA was emphasized by Arnold,
Shandarin, and Zel'dovich [14]. This may explain why
pancakes are not easily seen in low mass resolution N-
body simulations.
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