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Gaussian Fluctuation in Random Matrices
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Let N(L) be the number of eigenvalues, in an interval of length L, of a matrix chosen at random from
the Gaussian orthogonal, unitary, or symplectic ensembles of 3V by 3V matrices, in the limit 3V
We prove that [N(L) —(N(L))]/QlnL has a Gaussian distribution when L ~. This theorem, which
requires control of all the higher moments of the distribution, elucidates numerical and exact results on
chaotic quantum systems and on the statistics of zeros of the Riemann zeta function.

PACS numbers: 05.45.+b, 03.65.—w

Ensembles of 3V-dimensional Gaussian random matri-
ces (GRM's) with invariances under the orthogonal, uni-

tary, or symplectic groups correspond to the GOE, GUE,
and GSE were introduced by Wigner and developed by
Porter, Dyson, Mehta, and others [1,2]. Wigner's inspired
surmise that the statistics of eigenvalues of these GRM
can be used to model the statistical properties of the ob-
served spectra of complex nuclei turned out to be exactly
right. There is indeed good agreement between the ob-
servers high energy level spacings, pair correlations, and
variance or 5 statistics and those calculated analytically
from the GRM's in the limit 3V ~ ~. Moreover, the
GRM's have been found to be the very robust "renor-
malization group fixed points" of a large class of RM's
[3] which play an important role in many areas of physics
and mathematics [1—7].

In the present work we focus on the large L (long
wavelength) behavior of the random variable N(L) giving
the number of eigenvalues of a GRM, chosen from any
of the Gaussian ensembles, in an interval (y, y + L): We
always consider the 3V ~ ~ limit when the distribution
is translation invariant and use units in which the mean
spacing is unity. It is well known that the variance
of N(L) grows like lnL as L ~ ~. We prove that all
the moments of s(L) = [N(L) —L]/QlnL approach for
large L of a Gaussian distribution which implies (weak)
convergence of g(L) to a Gaussian random variable.
We shall discuss later the connection of our result with
the statistics of energy levels of quantum systems with
generic chaotic classical Hamiltonians and of the zeros of
the Riemann zeta function [4,5,7].

It is a remarkable fact that the distribution of energy
levels of the G(O, U, S)E are given by the Gibbs canonical
distribution of the positions of charged point particles on
the line interacting via the (two dimensional) repulsive
logarithmic Coulomb potential v(r) = —lnr at reciprocal
temperatures P = 1, 2, 4, respectively [1,2]. The particles
with positions x;, i = 1, . . . , 3V, on the real line are
confined by a harmonic potential. The total potential
energy of the system is
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VG(xl, . . . , X~) = g x,
' ——g In~x; —xj~. (1)

i=1 i Aj

In the corresponding circular ensembles of Dyson the x;
lie on a circle of length 3V, and the energy is given by the
second term on the right-hand (r.h. s.) of (1) with distance
measured in the plane. The canonical Gibbs measures
corresponding to Gaussian and circular ensembles become
equivalent in the thermodynamic limit 3V ~, yielding
the same k point, k = 1, 2, 3, . . ., correlation functions for
all P ) 0 [1,2,8].

These infinite volume correlation functions are known
explicitly for the "solvable" cases P = 1, 2, 4 correspond-
ing to the GRM. Defining as usual n, (xl, . . . , x, ) as the
joint density for j-tuples, the corresponding Ursell func-
tions Uk(xl, . . . , Xi, ) [9] are given by

Ul(xl) —= nl (xl) —= 1,

U2(X1, X2) = n2(X1, X2) n 1 (XI )n 1 (X2)

= n2(x, —x2) —1,

(2)

Ut, (xl, . . . , xk) =— g(—1) '(m —I)!
6

nG, ({XG,)),

Ui = U, (x, ) dx, = 2t = (N(I )) = Cl(I.), (3)

Up = dxl dx2 U2(xl, x2) = (N(N —1)) —(N)

= ((N —(N) )) —(N) = C2(L) —Cl (L),

U3 C3 (L) —
3C2 (L) + 2C1 (L), etc.

Using the generating function [9]

F(t ) = g F.(L)e"",
n=0

(4)

where G is a partition of the indices (1,2, . . . , k) into m

subgroups Gl, . . . , G and [XG ) are the x; with indices in

G, . [In the GRM literature, Yk = (—1)" 'Uq is usually
called the kth cluster function. ] The integrals Uk of
Uq over a k-dimensional cube having sides of length I
are directly related to the cumulants C, (L),j = 1, . . . , k
of the random variable N(L), the number of points (or
eigenvalues) in an interval of length L, which we shall
take for definiteness to be the interval [ t, t], L =— 2t. —
Thus
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with E„(L) the probability of having exactly n particles in
the interval L, we have

InF(p) = g ", p,
" = g —,U„(e~ —1)".C„„1

n! n=1 ".
This gives

Cp = P bt, ,jC~ + (—1) (k —1)!C) + UJ, ,
J=2

where

b„~ = b„ ~, ~
—(n —1)b„ ~~, 2 ~ j ~ n —1,

b„„=—1, n~2,
The Uk take on a particularly simple form for the GUE

(/3 = 2) [1,2],
k

Uk(xi, . . . , xq) = (—1) ' P S(x;+i —x;), (7)
Perm i,=1

where S(x) = (vrx) ' sin~x and xq+~ = x~, so the indices
are to be thought of as being on a circle. Using (6) one

readily obtains [1,2]

C2(L) = (InL)/m + O(1).

Note that for a system with short range interactions
C2(L) would grow like L but the logarithmic interactions
between the (charged) particles induce a sort of local
crystalline order reducing the variance to logL. It is this
strong correlation which produces level repulsion between
the eigenvalues and makes the large scale behavior of
the fluctuations far from obvious. Defining now the
normalized random variable

rt(L) = (N(L) —L)/ (1/7r ) lnL,

the kth cumulant of rt(L) will be ck =—Cq/[logL/m]"t2.
As is well known (cf [10]),g(L) will approach a Gaussian
random variable (with mean zero and unit variance) as
L ~, if and only if all ck, k ~ 3, go to zero, i.e., if
Ck = o([lnL/~ ] 2). Using an induction argument based
on the recurrence relation (6) and the equality (7), this

!
corresponds to proving that

&k(t) = dx~ . . dxl, S(xp —x~)S(xq —x2) . S(x~ —xI, ) = 2t + o[(lnt)" ],

We shall actually prove that sk(t) = 2t + O(lnt) which
implies that for k ~ 3 Cq(L) = O{lnL); in fact, we
believe that for k ~ 3 Ct, (L) stays bounded as L ~ ~,
as suggested by the explicit asymptotic evaluation of the
integrals,

s3 =2t— 3
, lnt + O(1),

27T2

11
s4 ——2t — lnt + O(1),6~2

which gives, using (6), that C3 and C4 are of O(1).
To prove (10) we make use of the fact [1] that

sk(t) = g A', (t) = TrS"(t),
L=1

where the A; (t) are the eigenvalues of the integral operator
S(t), (Sf)(x) = f, dy S(x —y)f(y). It is known [1] (and
can be easily proven) that the spectrum of S lies in [0,1].
We can now use an induction argument to prove that
sk(t) = 2t + O(lnt). This is so for k = 1, 2 (also for 3,4),
and for k ~ 2 we have

(12)

TrS" ' = TrS" —Tr[S" '(S —S )]. (13)
The first term is of the desired form by the indication
assumption while the terms in the parenthesis are positive
operators, and !!Sk ' !!~ 1 so it can be taken out of the
product yielding TrS +' = TrS + O(lnt) and the proof
is complete.

Nto„)(L) = NI, („,(L) + N„d(L) = N, dd(L) + N, „,„(L)
= 2N! !(L) + (0, ~1), (14)

where the superscripts (1,2) stand for the random vari-
ables obtained from the ensembles with P = 1, 2, and
Nb 1„„N„d are independent. This shows immediately
that in the infinite 2V limit the variables Nt2!(L) and
N!'!(L) normalized by the square root of their variances
have the same asymptotic behavior. Taking (Nb~„, {L))=(])

(N„d(L)) = (N!'!(L)) = L, we have

Our results extend to show that, if we divide up the
real line into a union of intervals of length L, let N, (L)
be the particle number in [jL, (j + 1)L, and set g~(L) =
[N, (L) —L]//QC2(L), j E Z, then the (rt, (L)j approach,
as L ~, jointly Gaussian random variables with mean

1zero and covariances (g, rtk) = 6, q
—26,

To prove the results for the GOE, P = 1, we use an
identity conjectured by Dyson and proved by Gunson [11]
(we thank Dyson for pointing this out to us). According to
this identity, superimposing two noninteracting Coulomb
gases, say, blue and red, in the circular ensemble at
reciprocal temperature P = 1 and then looking only at
alternate particles, e.g. , at all the odd (or even) ones,
yields the distribution at P = 2. Considering now the
number of particles in an interval of length L gives

2([[NbI„,(L) —L] + [N„d(L) —L]) ) = ([N ' (L) —L] ) = 2([N ' (L) —L] )—2 lnL
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giving the well known variance of the GOE [1].
For the GSE p = 4 we use the equality between statis-

tics of its eigenvalues and the odd eigenvalues of the GOE
[1]. This again leads to Gaussian asymptotics with a vari-
ance given by (I/2~2) logL + O(1). It seems very reason-
able to expect and one can give strong heuristic arguments,
based on the "long wavelength response" of "Coulomb"
systems, that the Gaussian nature of the fluctuations, with
variances (2/7r p) logL, holds for all p. (We thank Jan-
covici for pointing this out to us; see also [8].)

Using more detailed information on the spec-
trum of S (see [12]), it follows that st. (t) = 2t-
vr g, , j ' lnt + o(lnt) which using (6) implies that
Ck = o(lnt) for all k ~ 3. (We are indebted to Widom
for this information. ) Widom also noted that our proof
does not make any use of the specific form of S. It
only uses the property spec(S) E [0, 1] and the fact that
Tr(S —S ) ~ ~ (as t ~ ~). The conclusion therefore
holds for a larger class of matrix models [3].

The local statistics of the eigenvalues e, ,

j = 1, 2, . . . , ~, 0 ~ e~ ~ e2 ~ . . of a classically chaotic
quantum Hamiltonian (CQH), such as the geodesic
liow on a (nonarithmetic) surface of constant negative
curvature or the Sinai billiard, appear to coincide at high
energies with those obtained from the GRM [4]. More
precisely, if we consider the energy levels of a generic
CQH, suitably scaled so that the mean distance between
levels is unity in an interval (y, y + L) then their statistics
obtained by letting y vary uniformly in some interval
(Tt, Tq), will coincide, for T2 ~ ~, with that obtained
from one of the standard GRM ensembles when the
matrix size tends to infinity. Our result then predicts a
Gaussian distribution of the fluctuations in the number of
levels N(L) when L ~ ~. A numerical check of this for
some CQH will require using energy levels in a (scaled)
energy interval L with 1 « L « (Tz —Ti), T~ large.

It is also interesting, as emphasized by Berry and
co-workers [4], to consider in addition to the local
statistics of quantum levels also their global statistics.
These correspond, in our context, to fluctuations in the
number of levels in an interval (y, x) whose length
L(x) = x —y(x) is not fixed but grows with x as x
varies in the interval (Ti, T2) with T2 ~ ~. This includes,
in particular, the case y = 0, L(x) = x corresponding to
the fluctuations in the number of eigenvalues less than
x. This quantity, normalized by the square root of its
variance, was conjectured in [5] [where it is denoted by
Nfl(x)] to have a Gaussian distribution as x ~ ~ for all
CQH. If true this would be a general characterization
of CQH and distinguish them from integrable systems
where it was found rigorously that the global distribution
is non-Gaussian [13]. Quite generally, it was shown
by Berry [5] that when L(x) ) L,„(x), the variance of
N(L(x)) saturates for L ~ L,„Berry also found that.
NfI(x) (averaged over some interval containing many

eigenvalues but very small compared to x) grows for
billiard systems like logx.

As already noted, the distribution of eigenvalues in the
GRM is translation invariant, when the matrix size 3V
goes to infinity, so there is no analog of L „ in our
considerations. One can, however, consider fluctuations
in N(L) for an interval L(3V) which contains a number
of eigenvalues small compared to 3V but goes to in-
finity when 3V ~ ~, e.g. , in the circular ensemble we
could have L(N) —Nr, y ( 1 or even n3V, n « 1. For
the Coulomb system with neutralizing background it is
also possible to consider semi-infinite systems with vari-
ous boundary conditions and/or nonuniform background.
Some such systems have been considered in [8], and we
believe that our results about Gaussian behavior would
extend also to these systems which might model some of
the saturation features of CQH.

We turn finally to the (nontrivial) zeros of the Riemann
zeta function g(z) = g„,n ' which are, according to

1
the Riemann hypothesis, for the form z„= 2 + i y„. As
pointed out by Berry and co-workers [4], there are reasons
to expect similarities between the statistics of the y„and
of the energy levels of CQH. In fact Montgomery [14]
proved that the pair correlation function of the y„agrees
with that of the GUE, Eq. (7). Numerical calculation
by Odlyzko [7] give striking evidence that the nearest
neighbor level spacing distribution of the y, is, for large
n, indeed the same as that obtained from the GUE. In
a very interesting recent paper Rudnick and Sarnak [7]
greatly extended the results of Montgomery by showing
that the n-point correlation functions of these zeros
converge on a large class of test functions to those of
the GUE. Moreover, the normalized global fluctuations in
these zeros corresponding to Nfi(x) was shown by Selberg
[15] to have a Gaussian distribution. The same arguments
imply that the local fluctuation in their number in an
interval (y, y + L) averaged over (Ti, T2) and properly
scaled become Gaussian when T2 ~, followed by L ~
~ (we are indebted to Sarnak [7] for explaining this to
us). The results proved here thus fit completely with the
picture of the statistics of Riemann zeros being in the
same "universality class" as that of the GUE.

We have benefited much from discussion with
F. Dyson, B. Jancovici, M. L. Mehta, and P. Sarnak. We
also thank M. V. Berry, E. Brezin, and H. Widom for very
useful comments and J. Boite and F. Steiner for calling
our attention to their work prior to publication.
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