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Static Response and Local Field Factor of the Electron Gas
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We have evaluated the density-density static response of the electron gas at zero temperature and
in the metallic regime by diffusion Monte Carlo. The computed local field factor G(q) smoothly
interpolates between the asymptotic small and large q behavior, with a crossover around 2qF. In fact,
G(q) appears to be almost completely given by its asymptotes, being accurately reproduced by the
local density approximation to density functional theory for q ~ 2qF. We give a simple formula to
reproduce G(q) at relevant values of the wave vector.
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f-(q) = —v. (q)G(q), (1)
with v, (q) = 4vre /q the Coulomb coupling. E„and
f„are directly related in real space,

62E„[n]f.,(lr —r'I) =
~ ( )~ (,)

In this Letter we compute the zero temperature lo-
cal field factor G(q) of the electron gas from the static
density-density (linear) response function ~(q) [2], ob-
tained from extensive diffusion Monte Carlo (DMC)
simulations. The method is very simple [6,7]. One per-
turbs the otherwise homogeneous many-body system with
a static external potential

(2)

v„,(r) = 2vq cos(q r), (3)
which induces a modulation of the density, with respect to
its mean value no, and a shift of the ground-state energy
(per particle) [6]

x"'(q. q. —q) 4

no 4no

The electron gas or jellium is an ideal system of elec-
trons in a uniform neutralizing background, characterized
at zero temperature by one parameter, the average density
no —= I/(4~r, ati/3). In spite of its simplicity, the system
is interesting from many points of view. It represents the
first approximation to valence electrons in simple metals
[1]. It is a nontrivial model for many-body theory [2]. It
has a phase diagram that displays, with lowering the den-
sity, transitions to states with magnetic ordering and to
the Wigner crystal [3]. In addition, it provides the basic
ingredient of density functional [4] calculations for real
materials, both at the local density level and beyond [5].
All practical density functional schemes, in fact, are con-
cerned with the approximation of the exchange-correlation
energy E,[n] of the inhomogeneous many-electron sys-
tem in terms of properties of the homogeneous electron
gas. One such property is the local field factor G(q),
closely related to the exchange-correlation factor f„(q)
[21:

with g~3~ the cubic response function. A DMC simulation
allows an accurate evaluation of E for given q and vq.
By performing simulations at a few coupling strengths vq
one can extract g(q) as well as higher order response
functions from the calculated E, by fitting in powers
of vq. Clearly, the procedure must be repeated for each
value of the wave vector and of any other relevant
parameter characterizing the system. So far applications
have been to He [6], for which excellent agreement with
experiment was obtained, to charged bosons [7] and to 2D
electrons [6] within the fixed-node approximation.

In DMC simulations [8] one propagates the wave
function in imaginary time, starting from a suitable trial
function, to project out higher energy components and
filter out the ground state. We have chosen a trial wave
function of the form

'ItT' = Dl'Dl exp[ —u(r;I)], (5)
i&j

with D, a Slater determinant of one-particle orbitals with
spin projection s and u(r) the random phase approxima-
tion (RPA) pseudopotential [9]. The one-particle orbitals
are solutions of the problem of noninteracting particles
in an external field v'(r) = ct cos(q r), whose ampli-
tude cr = n(vq) is determined by optimizing the vari-
ational energy. Clearly, the imposed periodic boundary
conditions restrict q to the reciprocal lattice vectors of
the simulation cell. Finite size effects were mitigated by
(i) performing the Ewald summation on the infinite peri-
odic replicas of the simulation box, (ii) using a number
of particles N corresponding to closed shells of orbitals,
and (iii) keeping vq weak enough not to alter the orbital
filling appropriate to vq = 0. We performed simulations
with 38, 54, and 66 particles.

We have studied the unpolarized electron gas in the
metallic regime at few values of the density parameter,
r, = 2, 5, 10. By fitting the calculated ground-state ener-
gies to the polynomial of Eq. (4) we immediately obtain
the static response y(q). In Fig. 1 we show our fixed-
node results at r, = 5. Comparison with the mean-field
RPA [2], which is also shown, reveals that the effects of
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FIG. 1. Linear static response function ~(q) of the electron
gas at r, = 5. The circles give the present MC results, with the
full curve being an interpolation of the calculated points [see
Eq. (7)]. Error bars are reported on each MC point. The dash-
dotted curve is the RPA [2]; dots and dashes give, respectively,
the approximations of Geldart and Taylor [14] and of Farid
et al. [15].

correlation (and exchange) are large at this density. A di-
rect measure of such effects is provided by the exchange-
correlation factor [2], giving the deviation of the full re-
sponse from its RPA counterpart:

1 1f .(q) =-
+ (q) +RpA(q)

1
vc (q) (6)

Note that the RPA corresponds to f, (q) = 0 [G(q) = 0],
while Lindhard noninteracting response go(q) is obtained
for f„(q) = —v, (q) [G(q) = 1]. Clearly, working with

f„(q) or G(q) is equivalent in view of Eq. (1).
The limiting behavior of G(q) at small and large

q is exactly known. From Eqs. (1) and (2) it fol-
lows that, as q ~ 0, G(q) = A(q/qF) to dominant
order, with A(r, ) = 1/4 + ( dp, ,/dno)/(4'—e /qF),
qF = (3~ no)' the Fermi wave vector, and p, , the
correlation contribution to the chemical potential of
the uniform electron gas. The large q behavior is
given by [10] G(q) = C(q/qF) + B, where C is
related to the fractional change of kinetic energy, 62,
in going from noninteracting to interacting electrons:
C(r, ) = (7r/2e qF) [ d(r, e,)/dr, ], w—ith e, the correla-
tion energy per particle; B(r,) has a simple expression in
terms of 62, the fractional change of the squared kinetic
energy 64, and the pair correlation function at contact
g(0). A(r, ) and C(r, ) (or 62) can be readily calculated
from an accurate parametrization [11] of the equation of
state of the uniform electron gas [12]. To evaluate B in
the metallic regime we have used recent DMC results
[13] on the electron gas momentum distribution n(q)
and contact correlation, in conjunction with 62 obtained
from the equation of state. We find that for 0 ( r, ~ 10
our calculated B (for r, = 0.8, 1, 2, 3, 5, 8, 10), to-
gether with the known result B(0) = 1/3 [10], can
be reproduced with a precision of about 1% by
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FIG. 2. Exchange-correlation factor f„(q) of the electron
gas at r, = 5. The circles give the present MC results,
with the curve A being an interpolation of the calculated
points [see Eq. (7)] and curves B and C showing two
approximations [14,15]. The horizontal dashed and dotted lines
give, respectively, f„(0) and f„(~), while the dotted curve
gives the large q behavior off„(q).

B(r,) = (1 + aix + a2x )/(3 + bix + bzx ), where
x = ~r, and ai = 2.15, az = 0.435, bi = 1.57,
b2 = 0.409.

In Fig. 2 we give our fixed-node results for the
exchange-correlation factor of the electron gas at r, = 5.
The asymptotic behaviors are also shown. It is ev-
ident that f„(q) does not have much structure, and
it can be essentially reproduced by taking its small-q
constant value, for q ~ 2qF, and the large-q behavior,
for q ) 2qF. An interpolation scheme embodying the
behavior f„(q) = f„(0), q ( 2qF, though yielding
f„(~)= 0, is due to Geldart and Taylor [14]. As seen
from the figure, it appears to provide a reasonable account
of our data for q ~ 4qF, as well. We also report the
prediction of an approximation due to Farid et al. [15],
which has the correct functional form at large q [10].
There are quantitative deviations from our DMC points,
from below for q ( 2qF and from above for q ) 2qF.
The latter discrepancy is easily traced to an underestimate
of the constant B, since the approximation of [15] embod-
ies the correct value of C. In Figs. 3 and 4 we give our
results for the local field factor at r, = 2 and 10. It is
clear that considerations similar to those valid for r, = 5
apply also to r, = 2 and 10, with the obvious changes
implied by Eq. (1). Having the response function g(q)
one can also evaluate the static dielectric function of the
electron gas [2], via I/e(q) = 1 + v, (q)g(q). We find
that between r, = 5 and r, = 10 antiscreening [16] [i.e.,
1/e(q) ( 0] sets in. In fact, the dielectric function is
positive at r, = 5, while displaying at r, = 10 a negative
region for 0 ( q ~ 2qF.

Numerical simulations yield estimates for a finite num-
ber of particles, which need to be extrapolated to N = (x.
We find that size effects, which are known to be fairly
large for the total energy of electrons [9,13] especially
at small r„are also pronounced for the static response.
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FIG. 3. Local field factor G(q) of the electron gas at r, = 2.
The triangles, squares, and circles give the present MC results
with 38, 54, and 66 particles, respectively, with the curve A
being an interpolation of the calculated points [see Eq. (7)].
Curves 8, C, and D, F, respectively, show the predictions
of [14,15] and [17]. The dashed and dotted parabolas give,
respectively, the small and large q behaviors of G(q).

In fact, the restriction of q to reciprocal lattice vectors
of the simulation box yields different sets of allowed
wave vectors for different %, and this makes a systematic
extrapolation in N of g(q, N) somewhat difficult. How-
ever, a little reflection suggests that one may define a lo-
cal field factor for finite systems through ~ '(q, N) =

(q, N) —v, (q) + v, (q)G(q, N) and, on the physi-
cal ground that G(q) should describe short range correla-
tions among the electrons (beyond RPA), one may assume
G(q) —= G(q, ~) = G(q, N) This amoun. ts to attribute all
the N dependence of g '(q, N), whose additive structure
[2) directly follows from density functional theory, to its
noninteracting part ~o (q, N). All the data presented here
are obtained with this extrapolation procedure. Even at

the smallest r„shown in Fig. 3, no residual size depen-
dence can be appreciated within statistical error.

In some approximations the local field factor exhibits
a hump around 2qF, in the metallic regime. As is clear
from Figs. 2—4, within statistical error and to the accuracy
of our extrapolation procedure we find no evidence of
such a structure, though we cannot conclusively rule it
out. In Fig. 3 we also report (curve D) the predictions
of a recent screened Hartree-Fock approximation [17] .
This treatment yields a very small, hardly distinguishable
hump in G(q) at 2qF, and a sizable overestimate of our
MC results for q ~ 2qF. We also report in the same
figure a simple parametrization due to [17] (curve F),
which embodies the leading asymptotic behavior of the
local field factor at small and large q.

All our results for the local field factor of the unpolar-
ized electron gas in the metallic regime are recorded in
Table I. We have found that a simple interpolation for-
mula (ignoring the possibility of humps at 2qF) is able to
capture the main quantitative features of our fixed-node
local field,

—-1/n

G(q) =

(7)
with n = 8 for r, = 2 and r, = 5 and n = 4 for r, =
10. This can be explicitly checked from Figs. 1 —4, where
Eq. (7) is given by the full line. We conjecture that
Eq. (7), with n = 8 and A, B, C calculated as explained
above, should also give a good account of the local
field for 2 ~ r, ~ 5 and 0 ( q ~ 3qF. We note that
extracting the local field from the response function for
q ~ 3qz is very difficult as can be appreciated from
Fig. 1, since full and RPA responses become very close.
In fact, it is easy to show that both decay as I/q, with

1.5

TABLE I. Electron gas local field factor G(q), for selected
values of the wave vector q and of the density parameter r„
from fixed-node diffusion Monte Carlo simulations.
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FIG. 4. Local field factor G(q) of the electron gas at r, = 10.
The open circles give the present MC results, with the curve A
being an interpolation of the calculated points [see Eq. (7)] and
curve C showing the approximation of [15]. The solid circles
are the MC results of [18]. The dashed and dotted parabolas
give, respectively, the small and large q behaviors of G(q).

1.01
1.08
1.21
1.51
1.61
1.81
2.01
2.15
2.42
2.51
2.69
3.02
3.63
4.23

0.25(1)
0.28(2)

0.64(2)
0.77(1)
0.84(1)
0.90(7)
0.99(5)
1.04(12)

1.09(10)
1.18(9)
1.19(9)

0.30(2)
0.30(1)

0.67(2)
0.76(1)
0.88(2)
1.09(6)
1.09(4)
1.28(2)
1.33(3)
1.34(4)
1.44(4)
1.39(3)
1.99(12)

0.29(1)
0.24(3)
0.41(2)
0.67(1)
0.78(1)
0.92(1)
1.13(4)
1.19(5)
1.32(2)

1.46(8)
1.45(4)
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their difference being of order 1(q . It is unclear at
present whether the fine details of G(q) beyond 3qF are
of any practical importance.

The fact that the local field factor appears to follow
the small wave vector behavior up to q as large as 2qF
has some bearing on the accuracy of the local density
approximation (LDA) [4] to density functional theory. In
fact in LDA, as in any scheme giving a prescription to
construct E„[n]from the one-body density n(q), one can
generate a corresponding exchange-correlation factor by
using Eq. (2), and from it a local field by virtue of Eq. (1).
It is a simple matter to show [2] that the LDA local field
is GLD&(q) = A(q/qF), with A(r, ) as specified above.
Thus, as far as we can judge at present, LDA correctly
reproduces the static response for all q ~ 2qF, if the exact
equation of state of the electron gas is used to calculate A.

In summary, we have presented extensive accurate re-
sults for the local field factor of the unpolarized electron
gas, obtained with the fixed-node diffusion Monte Carlo
simulation. We have shown that our results correctly sat-
isfy the asymptotic behaviors, which can be independently
determined, and, in fact, appear to be dominated by them.
In this connection the ability of LDA to correctly repro-
duce the static response to wave vectors as large as 2qF is
intriguing. We plan to investigate this point more closely
in the near future. We have also given a simple formula
that reproduces the main quantitative features of the MC
local field in the metallic regime, to facilitate its use in the
areas of many-body and density functional theories.
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Note added. —After this work was submitted for pub-
lication, a MC study by Bowen, Sugiyama, and Alder
[18] appeared, with calculations similar to ours for r, =
1, 4, 6, 10. A direct comparison is possible at r, = 10,
and we make it in Fig. 4. We find that the points of [18]
are systematically lower than ours for q ~ 1.5qF. With
reference to this discrepancy, we note the following. (i)
The scatter of the data of [18] is reduced if our size ex-
trapolation scheme is used on their own data, as is the
discrepancy with our data. (ii) We have verified that the
remaining sizable discrepancy is mostly due to their use
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of a trial function with nodes different from ours (in the
presence of the modulating potential), yielding higher en-
ergies. (iii) Being fixed-node DMC variational, our re-
sponse is more accurate around 2qF.


