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Suppressed and Induced Chaos by Near Resonant Perturbation of Bifurcations
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We present experimental results which demonstrate for the first time that the onset of chaos in a
nonlinear system can be either suppressed or induced by the application of a perturbation signal which
is near resonant to a subharmonic of the fundamental system frequency. The technique represents a
feedback independent method for stabilizing or destabilizing chaotic orbits. Shifts in the onset of chaos
are demonstrated for perturbation signals which are near resonant to the period-2 orbit and the period-4
orbit of the experimental system.

PACS numbers: 05.45.+b

Manipulation of chaotic motion of deterministic dy-
namical systems has received considerable attention
recently. Controlling the chaotic response of a nonlin-
ear dynamical system by stabilizing unstable periodic
orbits of a chaotic attractor has been proposed [1] and
experimentally demonstrated in various systems [2—7].
Such control of chaos algorithms has been successfully
exploited to improve the output of a laser system [3],
to control cardiac arrhythmias [4], to control chaotic
behavior of a nervous system [5], and to tame chaos in
various other systems [6]. Another interesting example
of the manipulation of complex motion of a nonlinear
dynamical system to generate beneficial results concerns
synchronized chaotic systems [7]. Such synchronized
chaotic systems, which have been experimentally demon-
strated [8], are expected to play a role in the area of
private communications. In other words, manipulation of
chaotic motion is not only of scientific interest, but has
important practical ramifications as well ~

In this work, we demonstrate a novel method for sup-
pressing as well as inducing chaotic behavior in a nonlin-
ear dynamical system. The approach is feedback indepen-
dent and relies on the addition of a small periodic signal to
the drive. More specifically, the approach exploits the ef-
fects of near-resonant perturbation [9] on subharmonic bi-
furcations which appear as precursors to chaotic behavior
in many nonlinear dynamical systems. It should be pointed
out that suppressing chaotic behavior by adding a second
periodic force to the nonlinear system has been explored in
previous work [10—12]. However, in this work we add a
second periodic force to the drive which is specifically near
resonant to one of the subharmonics of the system. Typi-
cally, near-resonant perturbation of bifurcations can either
suppress or induce the bifurcation [13]. By suppressing
the bifurcation, we show that it becomes possible to delay
the threshold of chaos, thereby increasing the parameter
space in which stable periodic behavior can be observed.
Similarly, by choosing an appropriate near-resonant pertur-
bation, we discovered that it becomes possible to shift the
threshold point such that chaotic behavior can be induced
in a nonlinear dynamical system. The feedback and model
independent approach described in this work could have

important practical ramifications in fields ranging from bi-
ology to optics. For instance, the performance of a particu-
lar nonlinear system could be considered optimal if it oper-
ates in the periodic mode (e.g. , solid state laser [3]),while
another system may operate best in the chaotic mode (e.g. ,

certain neural functions [5]). However, drifts in the system
could place it in undesirable parameter space where system
performance is nonoptimal. In this work, we show that by
applying perturbations which are near resonant to subhar-
monic bifurcations, a stabiIizing as well as a destabilizing
shift of the chaotic threshold of a nonlinear dynamical sys-
tem can be produced. In other words, chaotic threshold of
a dynamical system can be suppressed or induced by the
addition of a small near-resonant perturbation, potentially
resulting in improved device or system performance.

The experiment involved measuring the dynamic strain
response of a magnetically driven Fe7&B ]3S9 amorphous
magnetostrictive ribbon (Metglas 2605S-2) using a fiber-
optic Mach-Zehnder interferometer. A small portion
(( 5 mm) of the ribbon (50 mm x 12 mm x 25 p, m)
was bonded to the optical fiber comprising one arm of
the interferometer. The phase shift of light propagating
in the fiber attached to the ribbon is a direct measure of
strain in the ribbon. The interferometer was contained in
a solenoid which was driven by a two channel frequency
synthesizer (HP 3326A), providing a longitudinal mag-
netic field H = Hd + hpcos27rfpt, where Hd, is the ap-
plied dc field and hp is the amplitude of the sinusoidally
varying field. The perturbing signal, h~ cos2vr fit, where
h& and f i are the amplitude and the frequency, respec-
tively, of the perturbing signal, was added with the sec-
ond channel of the synthesizer. The output time series of
the strain response was digitized with a high speed digi-
tizer (Lecroy 6810) for computing power spectral densi-
ties and reconstructing Row and Poincare diagrams. The
amplitudes of the applied magnetic fields were obtained
by measuring the voltage drop across a 1 0 resistor in se-
ries with the solenoid. The experimental arrangement has
been described in previous work [14].

The dc magnetic field, Hd„acted as the bifurcation pa-
rameter for the unperturbed system. That is, for a partic-
ular bifurcation sequence, fp and hp were held fixed while
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FIG. 1. Representative power spectra for system with fo =
9.02 kHz and hp = 0.51 Oe, . (a) Spectrum of period-2 orbit,
for Hd, = 0.75 Oe. (b) Spectrum of chaotic orbit, for Hd, ——

1 Oe.
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Hd, was varied. Different routes to chaos were observed
depending on the values of fp and hp. For instance, we
were able to observe subcritical and supercritical period-2
bifurcations, Hopf bifurcations, and period-4 and period-
8 bifurcations. Figures 1(a) and 1(b) show typical power
spectra at two different values of Hd„depicting period-2
and chaotic output, respectively. For the data of Fig. 1,
the drive frequency fp = 9.02 kHz and the amplitude of
the ac pump magnetic field ho = 0.5 Oe, ,

In order to observe the effects of near-resonant pertur-
bation on the threshold of chaos, we have adapted the
spectrogram [15,16] display technique, commonly used in
processing speech and sonar signals, to our experimental
data. In general, a spectrogram is a sequence of Fourier
transforms, each taken over a finite window of the time
series. The transform window is swept in time over the
length of the time series to create the two-dimensional
plot, where the horizontal axis corresponds to the location
(generally in time, but in this case Hd, ) of the window
function. Shading is used to represent the amplitude of
the power spectrum at a particular frequency and time. In
this manner, spectral changes in nonstationary processes
can be easily observed. The resulting spectrogram acts as
a type of bifurcation diagram for our system. Figure 2(a)
shows a typical example of a spectrogram where the sys-
tem is depicted to be undergoing a period-2 to chaos tran-
sition as Hd, is adiabatically ramped. The route to chaos
clearly showed that the system transitions from period-
1 period-2 chaos. The transition from period-1 to
period-2 was observed to be "soft" or supercritical, while
the transition from period-2 orbit to chaos was abrupt.

We now describe the effects of adding a near-resonant
perturbation, h& cos2vr f&t, to the system on the threshold

FKJ. 2. Spectrograms showing shift in the bifurcation param-
eter (Hd, ) for onset of chaotic behavior for three cases of near-
resonant perturbation. (a) Unperturbed case, h& = 0. (b) Chaos
suppressed for detuning 5 = 9 & 10 4. (c) Chaos induced for
detuning 5 = 6 X 10 ~. h~ ——0.1 Oe for (b) and (c).

of chaos. A near-resonant perturbation can be defined as
that signal whose frequency f&

is close to the frequency of
one of the subharmonics of the system. For instance, f I

can be chosen to be near resonant to the period doubling
frequency fp/2, such that a detuning frequency can be de-
fined as 8 =

~f ~
—fp/2~. In this work, the near-resonant

signal has small detuning, 5 ~ 10, where b, = 6/fp
Typically, the effect of a near-resonant perturbation on
a supercritical bifurcation is to suppress the bifurcation,
shift the bifurcation point, and stabilize the behavior at
the original bifurcation point [9,13]. The shift has been
found to increase with smaller detunings and larger per-
turbation amplitude. We added a near-resonant pertur-
bation (near resonant with respect to fp/2) with ampli-
tude hi = 0.1 Oe to the drive. As expected, the effect
of the near-resonant perturbation was to shift the period
doubling bifurcation point. However, two novel and sur-

prising effects not predicted by existing theories, nor pre-
viously observed in experimental systems, were observed:
(i) For detuning frequencies 10 4 s 5 s 10 3, the effect
of the near-resonant perturbation was to not only shift
the period doubling bifurcation but to shift the thresh-
old of chaotic behavior in such a way as to stabilize the
global behavior of the system. This is clearly depicted
in the spectrogram of Fig. 2(b) where the threshold of
chaotic behavior is seen to be suppressed with respect to
the behavior of the system with no applied near-resonant
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FIG. 3. Normalized shifted threshold of chaos [(p, pp)/pp]
versus relative amplitude of near-resonant perturbation (h1/hp),
for frequency detunings 6 = 9 X 10 and 5 = 6 X 10

FIG. 4. Gain of signal and idler versus detuning frequency of
perturbation. Relative perturbation amplitude hI/hp = 0.35.

perturbation [i.e., Fig. 2(a), h = 0]. (ii) For 6 ~ 10 4

the same amplitude near-resonant perturbation created a
completely different behavior, such that the near-resonant
perturbation was found to induce chaotic behavior. This
phenomenon is depicted in the spectrogram of Fig. 2(c)
(where 5 = 6 X 10 5), which can be compared to the un-
perturbed case [Fig. 2(a)].

The novel and interesting aspects of the above results
are as follows. We expect that a perturbation which is
near resonant to a period doubling bifurcation will shift
the period doubling bifurcation point. However, to our
knowledge, this is the first result which shows that the
detuning frequency of such a near-resonant perturbation
can be used as a control parameter to suppress as well as
induce chaos in a nonlinear dynamical system. That is,
the data of Fig. 2 show that near-resonant perturbations
tend to have a global effect on the system stability.

The amount of shift in the threshold of chaos is a
function of both the detuning and amplitude of the near-
resonant perturbation. Figure 3 shows the normalized
shifted threshold of chaos as a function of the strength
of the perturbation amplitude for two detunings. The
normalized shifted threshold of chaos is simply defined
as (p, —p, o)/p, p, where p, p is the threshold parameter
with zero applied perturbation (i.e., h~ = 0) and p, is
the shifted threshold parameter for h] 4 0. It is clear
from Fig. 3 that the shift in the threshold of chaos
is positive, corresponding to suppression of chaos, for
detuning 5 = 10 3. For smaller detuning, 5 = 10, the
shift in threshold is negative, corresponding to induced
chaos. For 10 ~ 5 ~ 10, a smooth transition from
suppressed to induced could be observed. The behavior of
the shifted chaos threshold could be further characterized
by monitoring the response of the near-resonant signal
at f~ as the system approaches the threshold of chaotic
behavior. Previous understanding of the behavior of small

signals in systems on the verge of an instability lead us to
believe that the signal at f~ will undergo net amplification
as the system approaches the threshold of instability
[17]. The theory of small signal amplification near a
bifurcation also predicts that the net amplification of the
signal, which in this case is the near-resonant perturbation
signal, increases as its detuning frequency decreases, with
the gain curve taking a Lorenztian shape [17]. The
amplification effects due to the variation in the detuning
frequency of the near-resonant signal in our system, which
is biased close to but not at the threshold of chaos, are
depicted in Fig. 4. For detuning frequencies 6 ) 15 Hz
the near-resonant signal experiences little amplification
(gain =1) even though the system is close to an instability.
For 5 ~ 6 ~ 15 Hz the near-resonant signal undergoes a
small net amplification (gain ) 1), as expected. However,
for 6 ~ 5 Hz the near-resonant signal undergoes a net
deamplification Such eff.ects have been observed in
the Lorenztian noise structure of parametric amplifiers
operating near instabilities [18], but have not previously
been observed in periodic signals. It is very interesting to
note that the detuning frequency range in which the near-
resonant signal undergoes amplification approximately

Pert. On

Time (s)
FIG. 5. Spectrogram showing suppression of chaotic behavior
by application of perturbation near resonant to fp/4 Perturba-.
tion is turned on at t = 0.8 s and is turned off at t = 1.8 s.
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coincides with the range in which suppression of chaotic
behavior was also observed [e.g. , Fig. 2(b)], while the
range in which deamplification takes place approximately
coincides with the range in which induced chaos was
observed [e.g. , Fig. 2(c)].

The spectrogram of Fig. 5 shows that suppression of
chaotic behavior by near-resonant perturbation of higher
periodic orbits is also possible. For drive frequency,
fp = 9.54 kHz, the system showed a period-4 bifurcation
prior to transitioning to chaos. By applying a signal which
is near resonant to the period-4 orbit, it was possible
to suppress chaotic behavior. The effects of turning the
near-resonant perturbation on/off on the response of the
system operating in the chaotic regime ( fo = 9.54 kHD-
z) are shown in Fig. 5. The system transitions to a period-
4 state when a signal which is near resonant to the period-
4 orbit is turned on and switches back to chaotic behavior
when the near-resonant signal is turned off. It should
be pointed out that once the near-resonant perturbation
is turned on to suppress chaotic response, the system
remains in the suppressed (periodic) state as long as the
near-resonant perturbation is kept on. In other words,
with the presence of a near-resonant signal, the system
does not wander off in phase space toward any other
attractor, showing the robustness of the technique.

As described earlier, the method has the potential to
benefit systems in fields ranging from biology to optics.
Nonlinear systems which prefer to operate in the chaotic
or complex region of phase space, but drift off onto
periodic attractors, could be made to remain in the chaotic
region by the application of an appropriate perturbation
to the system, while systems which have a tendency to
drift away into chaotic regions of parameter space could
be made to remain in periodic region by the application of
a suitable near-resonant signal.

In conclusion, we have demonstrated for the first time
that near-resonant perturbations affect the global stability
of a nonlinear dynamical system. We have observed that
near-resonant perturbations of subharmonic bifurcations
can suppress as well as induce chaotic response in certain
nonlinear dynamical systems. The experimental work
could have important ramifications in numerous fields of
study.
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