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Diffractive Orbits in Quantum Billiards
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We study diffractive effects in two-dimensional polygonal billiards. We derive an analytical trace
formula accounting for the role of the nonclassical diffractive orbits in the quantum spectrum. As an
illustration, the method is applied to a triangular billiard.
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During the last decade several methods based on peri-
odic orbit (PO) theory have been successfully employed
to study quantum systems whose classical equivalent is
chaotic (see, e.g. , [1]). PO theory applies also when the
system is not fully hyperbolic (when some orbits appear
in families [2]) or integrable [3]. More recently it has
been refined to include complex orbits [4] and diffractive
effects [5,6]. In this line we aim at studying the problem
of wedge diffraction as an extension of the standard PO
theory. This is one of the oldest and simplest examples
of diffraction (see, e.g. , [7]), and it is also the case where
the diffractive corrections to semiclassics are the more im-
portant.

In this Letter we calculate for the first time the
role of nonclassical diffractive orbits in the spectrum of
two-dimensional polygonal billiards. We derive a trace
formula embodying the contribution of diffractive PO's to
the level density [Eq. (9)]. This contribution is of order
~h smaller than the contribution of isolated PO's and is
the next order term in the trace formula. As an example,
the formalism is applied to a triangular billiard with
angles (n/4, vr/6, 77r/12), and one sees that it provides
a very accurate description of the Fourier transform of the
spectrum.

We consider a quantum particle enclosed in a polygonal
billiard 8, and we impose Dirichlet boundary conditions
on the frontier BS. Hence the associated Green function
is the solution of the following equation:

(4ii + k')G(q&, q&, k) = &(q& —q&) i~~ide 8,
G(q, , q„,k) = 0 on aZ,

where q is a coordinate in configuration space.

E(kL—p, ~/z)
Go(qa, q~, k) =

q„q, i 8i 7rkL
(2)

where the sum is taken over all classical trajectories going
from q~ to qadi. In (2) L is the length of the trajectory
and p, is the associated Maslov index [8]. In polygonal
enclosures the boundary has no focusing components,
there are no caustics, and p, is simply twice the number of
bounces of the trajectory on 8$.

In polygonal billiards the Hamiltonian flow is discon-
tinuous on the vertices [9] and when the angle at a vertex
is not of the form ~/n (n E IN* ) this causes diffraction
(see, e.g. , [10]). Then, following Keller's geometrical the-
ory of diffraction [11],one is led to consider nonclassical
contributions to the Green function which are "diffractive
orbits" starting at qz, going to a vertex q& and then to qz.
These orbits are nonclassical because at q] the reflection
is not specular. Far from the region of discontinuity of
the Hamiltonian flow, the corresponding Green function
may be taken to be

Gi(qB qA k) = Go(qi, qw, k)i(0, 0')Go(qa, qi, k),

(3)

where 23i (0, 0') is a diffraction coefficient evaluated
in the solvable case of two semi-infinite straight lines
meeting with an angle y equal to the interior angle of
the polygon at qi. 0 (0') is the angle of the incoming
(outcoming) trajectory at q~ with the boundary. X7~ (0, 0')
reads [10—12]

The semiclassical approximation for G reads (see, e.g. ,

[8])

4 sin(~/N) sin(0/N) sin(0'/N)
i 0, 0'

N (cos(vr/N) —cos[(0 + 0')]) (cos(7r/N) —cos[(0 —0')]) '

where N = y/vr is not assumed to be an integer.
As stated above, one sees in expression (4) that when y is of the form 7r/n, 23i is zero and there is no diffraction.

Indeed, in this case a trajectory passing by q& is the limit of a trajectory bouncing specularly n times near the vertex,
and a contribution of type (2) accounts for the effect of the wedge. This is to be related to the fact that, in this case
there exists a nth iterate of the liow which is continuous [9]. Note also that D& is zero if 0 or 0 is equal to 0 or y (i.e.,
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in the case of a diffractive trajectory having a segment
lying on a face).

For an orbit with several diffractive reflections at points
qi, . . . , q„ formula (3) becomes

I. =2
I L~ —2.83

Gv(qa. qw, k) = Gp(qi ~ qw, k)

23, Gp(qj+i, q, , k) 23,
L8 —5.46

X Gp(qadi, q, k),
L~ —5.46 L~ —6.6g Lg —6.77

where 23~ is the diffraction coefficient at point q~ as given
by (4).

In (2), (3), and (5) the indices 0, 1, or v of the Green
function recall that diffractive effects are subdominant (by
a factor of order k '/ ). There might be less severe
nonanalyticities on the boundary leading to higher-order
diffractive corrections. Note also that we are using here a
simple approximation for the Green function which is not
valid when the angles 0 and 0' at an edge are such that
the diffractive orbit is close to being real; in this case the
coefficient 23i(0, 0 ) diverges. This occurs in the vicinity
of the line of discontinuity of the Hamiltonian Aow. In
order to have a formula valid in all regions of space, one
should use a uniform approximation such as first provided
by Pauli [12] and whose general form is given in [10] (see
also [13]).

The level density p(k) is then obtained from the Green
function by the usual formula:

2k
p(k) = — Im d qG(q, q, k).

p (k) can be separated in a smooth function of k, p (k)
plus an oscillating part p(k). The zero-length trajectories
in (6) contribute to p and will not be considered in detail
here (see [14]). When G is replaced by its semiclassi-
cal approximation (2), a stationary phase evaluation of (6)
corresponds in considering only the contribution of clas-
sical PO s to p. When diffractive orbits such as (5) are
taken into account, one is led to consider also "diffractive
PO's, " [5] which are PO's with one or several diffractive
reflections (examples of such orbits are given in Fig. 1).

Let us consider first the contribution of classical PO's.
In a polygonal enclosure there is a drastic difference be-
tween PO's with even and odd number of bounces. The
latter ones do not remain periodic when a point of reflec-
tion is translated along a face (they period double into
a PO with twice as many bounces). This can be under-
stood by remembering that, for the phase-space coordi-
nates transverse to the direction of an orbit, a bounce on
a straight segment leads to an inversion. On the other
hand, PO's with an even number of bounces form fam-
ilies which correspond to local translation parallel to the
faces of the polygon. They are neutral (or direct para-
bolic; see [8])PO's to which the usual trace formula does
not apply; we use a generalization of Gutzwiller's theory

"~0 = 7&6 L 773

FIG. 1. The shortest classical and diffractive PO's in the
triangle (7r/4, vr/6, 7~/12). All these orbits are self-retracing.
For diffractive PO's the diffraction point is marked with a black
spot. Orbits 6 and 10 form families, 5 and 7 are isolated. The
lengths are given in units of the height of the triangle.

which is valid for the case of degenerate PO's [2]. We
quote here the result and leave detailed discussion for the
future [13). A family of orbits contributes to p (k) as

kL
d~ cos(krL —7r/4) .2r~ (7)

L
p(k) — cos(krL) .2'

Formula (8) holds when the number of repetitions is
odd. When r is even, the rth iterate of an isolated orbit
leads to a family, and formula (7) applies.

The derivation of the contribution of a diffractive PO
is patterned on what is done in Gutzwiller's trace formula
for an isolated PO. The length of a closed diffractive
orbit in the vicinity of the diffractive PO is expanded up
to second order, and the trace of the Green function is
evaluated by a stationary phase approximation. The final
contribution of a generic diffractive PO with v diffractive
reflections to the oscillating part of the level density reads:

T

L
p(k) — cos(kL —p, 7r/2 —3v 7r/4) .7r:; $8~kL~

(9)

Equation (7) is written for the general case of the rth
iterate of a primitive orbit of length L (r E IN ). d~ is
the length occupied by the family perpendicular to the
orbit's direction. It is equal to d cos @, where d is the
length occupied by the family on a face and @ is the angle
between the direction of the orbit and the normal to this
face.

For an isolated PO with an odd number of bounces, one
has the following contribution:
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In (9) L i, . . . , L, are the lengths along the orbit between
two diffractive reflections. L ~ + . + L = E is the
total length of the diffractive PO. p, is the Maslov index
which is here twice the number of specular reflections.
Formula (9) is the most important result of this paper.
Note that different diffractive orbits may combine if they
have diffraction points in common. Hence, repetitions of
a primitive diffractive orbit appear as a special case of (9);
in this case, however, in the first factor L/7r of the right
hand side of (9), L should be understood as the primitive
length of the orbit. The above formulas show that the
contribution of a family of orbits is of order 8(k'~ ), for
an isolated orbit it is 6(1) and for a diffractive PO it is
6 (k '~ ). Nevertheless, we will see in the following that
diffractive orbits have a very noticeable contribution to
the level density.

We will now illustrate our approach by studying a spe-
cific example. Let us consider a triangle with angles
(7r/4, ~/6, 7'/12) As exp. lained above, diffraction oc-
curs only at the vertex with angle 7~/12. The scale
of lengths and wave vectors is fixed by the value h of
the height going from this vertex to the opposite face.
We take h = 1 in the following: The shortest classi-
cal and diffractive PO's in this triangle are shown in
Fig. 1. Diffractive rejections are indicated with a black
spot. Note that the first orbits are diffractive; classical
orbits (isolated or in families) occur at greater lengths.
The spectrum was computed numerically by expanding
the wave function around the vertices with angles ~/4
and vr/6 in "partial waves, " which are Bessel functions
with a sinusoidal dependence on the angle defined near
the considered vertex. More precisely, if r, and p„are
polar coordinates defined near the vertex vr/n (n = 4
or 6), the partial waves in this region are of the form
J„(kr„)sin(nmp„) with m H IN*. One then imposes
matching the wave function and its first derivative along
the height h (see details in [13]). We determined the first
957 levels, up to k, = 96. The accuracy of the com-
putation was tested by varying the number of matching
points and partial waves. We evaluate the typical error
on an eigenvalue as being of the order of a hundredth of
the mean-level spacing.

In order to visualize the importance of classical and
diffractive PO's of successive lengths in the spectrum,
we study the regularized Fourier transform of the level
density:

It:max

in Fig. 2. The numerical result is represented by a
thin line; and the semiclassical approach (7,8), corrected
by diffractive PO s (9), is represented by a thick line.
We also included the contribution of p (k) in order
to reproduce the initial peak at L = 0. We see that
the agreement is excellent. Note that the existence of
diffractive PO s is of great importance for reproducing
all the peaks in lF(L)l. This is illustrated in the figure
where their contribution (9) has been shaded.

Here, several comments are in order. Note first that
the diffractive PO's labeled 2 and 4 in Fig. 1 have not
been included because their diffraction coefficient is zero.
Also, the orbit labeled 7 in Fig. 1 has a nonstandard
contribution; it is an isolated orbit, which accounts for
boundary effects on the family with the same length
(labeled 6 in Fig. 1). In addition to the orbits of this
family, it has an extra reIIection on the bottom face (the
same type of orbit was considered in Refs. [15,16]). The
weight of PO number 7 is reduced by a factor of 1/2
compared to (8) since one integrates only over closed
orbits on one side of this limiting PO. Also, we included
repetitions of diffractive PO's, numbers 1 and 3, and
they can be seen to still have a noticeable contribution.
We did not include the diffractive PO composed by the
sum of orbit 1 and 3, although it can be considered
as a small diffractive correction to the contribution of
family 6. Indeed, the orbit "1 + 3" lies just on the
region separating real orbits from diffractive ones; and, as
mentioned above, it cannot be accounted for by a simple
diffraction coefficient such as (4). This type of correction
will be treated in a forthcoming publication [13].

To summarize, let us emphasize the important role of
nonclassical orbits in the spectrum of quantum billiards.
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F(I.) = ke' p(k) dk. (10) L, L~ 2Lq L5 L8
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If k „~+~ and if the regularizing coefficient n is
set to zero in (10), F(L) is just a series of delta peaks
centered on the lengths of the classical and diffractive
PO*s. The multiplicative factor k in (10) is meant to
cancel the singularity k of the contribution of a
diffractive PO of type (9) with up to v = 2 diffractive
reIIections. We take here a = 9/kz, „and plot lF(L)l
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FIG. 2. lF(L)l as a function of L The thin line is.
the numerical result and the thick line the semiclassical
approximation (7,8) with diffractive corrections (9). The two
curves are hardly distinguishable. The contribution of the
diffractive PO's has been shaded.
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The existence of these orbits affects qualitatively the
Fourier transform of the spectrum. The above example
is only one among others where the discontinuity of
the classical dynamics is linked to strong diffractive
corrections to semiclassics. It was argued in [17] that the
same type of corrections should be taken into account for
the three-dimensional icosahedral billiard. We also expect
diffractive effects —of the same order as those described
here —in more general billiards with cusps (nonpolygonal
or with an additional external field); in these cases a
simple generalization of formula (9) accounts for the role
of diffractive PO's. Finally, we note that the present
work illustrates that semiclassical methods provide a very
appealing tool which, when corrected with tunneling or
diffractive effects, allows one to describe accurately the
solution of partial differential equations using simple
geometrical methods.
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