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Stability of two-wave solitons supported by resonant parametric interactions in a diffractive (or
dispersive) optical quadratic medium is investigated analytically and numerically. It is found that the
solitons can become unstable when the phase matching between the fundamental and second harmonics
is not exactly satisfied. The analytical criterion for the linear instability is presented, and it is revealed
that the instability leads to two possible scenarios of the soliton dynamics, either large-amplitude in-
phase oscillations of two harmonics or the soliton decay.

PACS numbers: 03.40.Kf, 42.50.Rh, 42.60.Jf, 42.65.Jx

It is well known that propagation of modulated quasi-
harmonic waves in dispersive (or diffractive) media of
various physical nature is usually governed by the non-
linear Schrodinger (NLS) equation (see, e.g., [1]). How-
ever, the NLS equation is not valid near resonances with
the second harmonics excited due to a nonlinear (gener-
ally quadratic) response of a medium. If group velocities
of the resonantly interacting harmonics are essentially dif-
ferent, dispersion effects are much weaker than the effects
of the wave walk-off and nonlinear interaction. In this
limit the equations describing three-wave interactions are
known to be exactly integrable (see, e.g., [1], and refer-
ences therein).

When dispersion or diffraction become important, non-
trivial effects can be already observed for two interacting
waves due to solely parametric interactions. In applica-
tion to nonlinear optics, this means that the nonlinearity-
induced phase shift [2] and self-trapping of light beams
[3] can be achieved in the so-called X(Z) materials due
to the cascaded nonlinearities. It has been also shown
that the cascaded nonlinearities can support different types
of two-wave (spatial or temporal) parametric solitons [3—
10], which recently have been observed experimentally in
nonlinear planar waveguides [11].

Resonant interaction between the fundamental (w) and
second (v) harmonics in a diffractive (or dispersive) X(z)
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medium can be described by the coupled equations for the
dimensionless variables [10],
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where z is the propagation distance and x stands for the
transverse coordinate (spatial solitons) or retarded time
(temporal solitons). The parameter o describes either the
ratio of the wave vectors (spatial solitons) or the ratio of
the group-velocity dispersions (temporal solitons) of two
interacting waves. The parameter o can be presented as
a = 20 — A, where A is proportional to the wave vector
mismatch Ak = k, — 2k; between the harmonics, and it
can also include the walk-off effect [9,10].

The diffraction (dispersion) effects described by the
second-order derivatives in Eqgs. (1) are crucial for the exi-
stence of localized (soliton) solutions. Stationary soliton
solutions of Egs. (1) are presented by real functions w =
wo(x) and v = vp(x), which are independent of z. For
the particular value & = 1 these solutions were first found
by Karamzin and Sukhorukov [3] and then reproduced
again in [6]. Recent numerical analysis [8—10] revealed
the existence of the soliton solutions of the system (1)
for any value of a and, moreover, it was also shown that
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these solitons can be generated from certain classes of
localized initial conditions [9,10].

It is usually believed that two-wave (bright) optical
solitons of the model (1) are stable [3—-9]. For the
case Ak = 0 (a = 20, in our notations), the soliton
stability was proven even for the multidimensional case
[4], whereas for other cases the stability was demonstrated
numerically [6-9].

In this Letter we present, for the first time to our knowl-
edge, a rigorous stability analysis of stationary localized
solutions of the model (1) and reveal instability of para-
metric solitons even for the (1 + 1) model, provided the
condition of the phase matching is not satisfied.

To analyze the stability of the soliton solutions
wo(x) and wvo(x) with respect to small perturba-
tions, we linearize Egs. (1) on the soliton back-
ground, w(x,z) = wo(x) + [W,(x) + iW;(x)]e?* and
v(x,z) = vo(x) + [V,(x) + iV;(x)]e??, and obtain the
linear eigenvalue problem

w,\ [ W ANIE
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where

_ (d*/dx* — 1 %= vo(x),
L. = ( wo(x),

wo(x) )
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It is known [4] that the soliton solutions are stable for
a = 20, i.e., when both harmonics are phase matched.
However, far from the line @« = 20, instability may appear
at some critical value @ = a¢(o). In the vicinity of the
instability threshold @ = ao(o) the growth rate A is small
and we can seek the solutions to Egs. (2) in the form of
asymptotic series in A,

Wi d) = > WG, Ves ) = > v (),
n=0 n=0
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In the zero-order approximation, Egs. (2) become
decoupled and we find two localized solutions: (i) Wr(o) =
v =0, w9 =w,, v =24y, and Gi) W =
dwo/dx, VI = dvo/dx, W = v = 0. Solution (i)
describes a small shift of the complex phase of the sta-
tionary soliton, while solution (ii) describes its coordinate
translation. It is clear that both the solutions give the so-
called neutral modes of the linear problem (2) at A = 0.
To describe instability threshold we are interested in the
solutions to (2) with nonzero but small A. Such solutions
are expected only for special values of the parameters a
and o near the critical curve & = ag(o). The instability
threshold, as well as a general dependence a(o, A), can
be found from the corresponding solvability conditions
to the linear problem (2). First, we can show that the
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translational mode (ii) does not become unstable in the
whole region of the parameter plane (a, o). Therefore
we consider asymptotic expansions generated by the
phase neutral mode (i) and proceed to the next-order ap-
proximations of the asymptotic expansions. Then, in the
first-order approximation, we find an explicit analytical
solution for the first corrections,

X dwp dwg
W =wy + = — + Qo — a) —,
" 0 2 dx ( )aa
X dvg dvg
VD =95 + = —= 4+ 20 — a) —, 4
; vo + 5 (20 — a) o )

and W = v = 0.
Substitution of Egs. (4) into the solvability condition

+oc
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gives us the equation for the instability threshold:

4l(a,0) =220 — a) + 30(a,0) =0,

(6)
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where Q(a,0) = [T5dx (wi + 20vd) is the energy
(Menley-Rowe) invariant of Egs. (1). Equation (6) is a
quadratic equation in o, and its coefficients are expressed
only through the stationary soliton solutions which depend
on the parameter «. Such soliton solutions have been
found for any @ > 0 in Refs. [8,10] by the numerical
shooting technique. Using Eq. (6) and the results from
Refs. [8,10], we calculate the instability threshold curve
a = ap(o) and present it in Fig. 1 (solid line). The
dashed line shows the curve of the exact resonance a =
20 when both harmonics are phase matched, k, = 2k;.
When the matching is destroyed and the wave vector of
the second harmonic is bigger than the double wave vector
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FIG. 1. Region of linear instability of two-wave solitons

on the parameter plane (a,o). The dashed line a = 20
corresponds to the phase-matched interaction between the
harmonics at Ak = 0.
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of the first harmonic, k, > 2k;, the soliton solutions
become unstable for a < ay(o).

The instability growth rate A can be estimated analyt-
ically from (5), in the second-order approximation, near
the instability threshold curve @ = aq(o),

(e, 0)

A2 =
L(ag, o)

= C(ap, 0) (ap — a), @)

where C = I;'9I;/da and I, is expressed through the
higher-order terms of the asymptotic series (3) as follows:

+oc
hia,o) = / dx(WOw? + avOv?).

Using a direct analysis similar to that of Ref. [12], we can
prove that the integral I, is positive for nontrivial local-
ized solutions of Egs. (2) under the condition vg(x) > 0.
This immediately implies that on the plane (a, o) the in-
stability domain is given by the condition /; < 0, which
is satisfied for @ < ag(o) (see Fig. 1).

For large «, we can seek the solutions to Egs. (1) in the
form of asymptotic series in & ~!, when Egs. (1) transform
to a single NLS equation for w(x,z) (see, e.g., [10]).
This allows us to find the exact results describing the
asymptotic behavior of the instability threshold curve (6)
and the growth rate (7) for a > 1: o = Coa®, A2 ~
(0 — Cxa®)/a’, where C = 35/128. It is clear that
the stability region expands rapidly for large «, and the
growth rate vanishes inside the instability domain.

For the case of spatial optical solitons discussed in
Ref. [8] we have o = 2, so that, according to the analysis
presented above, the two-wave solitons become unstable
for @ < ap = 0.212 (see Fig. 1). The instability for
smaller «’s is characterized by the instability growth
rate, which can be calculated numerically by investigating
the evolution of perturbation eigenmodes. To do this,
we use the system of linear equations (2) with the
stationary soliton solutions found in [8,10] and calculate
the exponentially growing modes which exist for & < ay.
The growth rate of the soliton instability for the case
o = 2 is plotted in Fig. 2. The dashed line represents
the result (7) of our analytical theory with C = 0.416.

The important physical question is the development
of linear instability in the subsequent dynamics of the
two-wave solitons. We have analyzed this problem
numerically and found two different scenarios of the
instability dynamics. As can be seen in Figs. 3(a)-3(c),
on one hand the exponential growth of perturbations
can be stabilized by nonlinearity, and this leads to
periodic amplitude oscillations with a little amount of
radiation [less than 2% for the distances presented in
Fig. 3(c)]. On the other hand, Figs. 4(a)—4(c) display
completely different dynamics: The instability leads to
the soliton spreading. This means that diffraction cannot
be suppressed by nonlinearity and soliton pulses finally
decay into linear diffractive waves.
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FIG. 2.
numerically (solid curve).
shown by a dashed line.

Growth rate of linear instability at o = 2 calculated
The analytical asymptotic (7) is

In order to describe analytically these two scenarios we
take into account nonlinear effects accompanying the de-
velopment of the linear instability. We select a close to
ag, so that the small parameter € characterizes the devi-
ation @ — ag ~ O(€?). Then, it follows from the lin-
ear theory that the growth rate has the order O(e) and,
therefore, the unstable linear perturbations grow on the

0 100 200 300 400 500 600

FIG. 3. Characteristic evolution of the unstable solitons for
the case o0 =2, a = 0.05, and w(0) > 0. (a) Evolution
of the soliton amplitudes w,, = |w(0,z)| and v, = |v(0,z)]|
for the fundamental (solid curve) and second (dashed curve)
harmonics. (b), (c) Propagation of the soliton components w
and v, respectively.
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FIG. 4. The same as in Fig. 3 but for (0) < 0.

“slow” scale Z = €z. This allows us to introduce the
slowly varying complex phase S = S(Z) and look for
the perturbed solutions of Egs. (1) in the form of asymp-
totic series w = [wo(x) + ow + O(e¥)]eieS, v =
[vogx) + 2oV + 0(€%)]e?cS, where the functions
wi" and V" are given in (4), and @ = dS/dZ describes
a correction to the wave numbers of the harmonics. Then,
the subsequent calculations yield the nonlinear equation
for the function w,

d’w

ﬁ—)\zw-f—'ywz:(), ®)

where A? is given by Eq. (7) and y = 313/2I, character-
izes effects due to quadratic nonlinearity. The integral /3
can be calculated with the help of the stationary soliton
solutions [see Eq. (4)] using the explicit formula

—+o0
Iia, o) = f dx(W? + 20V 2 — w2y (),

oo

We have found numerically that for any @ = ao(o) the
integral I3 is positive and, therefore, y > 0.

As follows from Eq. (8), the exponential growth of lin-
ear perturbations with @ (0) > 0 is stabilized by nonlinear-
ity leading to oscillations around a novel stable equilibrium
state wg = A?/vy. This equilibrium state corresponds to a
stationary soliton which can be described also by Eqgs. (1)
but for a renormalized parameter « lying inside the sta-
bility domain shown in Fig. 1. Therefore for a slightly
increased amplitude of an unstable soliton our analytical
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model (8) predicts in-phase pulsations of the fundamental
and second harmonics around a novel stable soliton, and
this exactly corresponds to the evolution observed numer-
ically [see Fig. 3(a)].

For w(0) < 0, according to Eq. (8), such a stabiliza-
tion is not possible and, therefore, a slightly decreased
amplitude of an unstable soliton must gradually decrease.
This kind of soliton decay is actually observed numer-
ically as is shown in Figs. 4(a)—4(c). Thus the theory
gives two scenarios of the instability of two-wave solitons
in diffractive quadratic media, either long-lived almost pe-
riodic pulsations or the soliton decay.

The criterion of the soliton instability given by Eq. (6)
looks different from the well-known criterion of Vakhi-
tov and Kolokolov [13] for the NLS-type equations. In
the latter case, the soliton stability is determined by the
slope of the dependence of the energy invariant Q vs
the soliton propagation constant. However, we have been
able to generalize the Vakhitov-Kolokolov criterion to the
case of resonant wave interactions in a quadratic non-
linear medium. Indeed, if we make the parameter «
(which includes in this case the soliton propagation con-
stant) by an internal solution parameter using the follow-
ing scaling transformation |w| = a™?|w|(ax, a’z), |9| =
a~?|v|(ax, a’z), where a®> = 20 — a > 0, the energy
invariant Q is also changed to be

~ 1
Qla,0) = mQ(a,U)- )

Now the condition dQ/da = 0 completely coincides with
the criterion (6) derived by the linear stability analysis,
because I; = %(20’ — @)%23Q/da. Thus, in such a
renormalized form, the soliton stability is determined by
the slope of the function Q(a) similar to that in the
Vakhitov-Kolokolov criterion, and the two-wave solitons
are unstable provided 00 /da < 0.

In conclusion, for the first time we have found and
analyzed the instability of two-wave solitons in diffractive
(or dispersive) quadratic media. Our results are extremely
important for applications of y® solitons in all-optical
processing and switching, since they give the sufficient
criterion for the existence of stable parametric solitons
(ky = 2k1). In the opposite case (k; > 2k;), the solitons
may become unstable. The approach and results obtained
can be easily extended to other models of various physical
context describing resonant wave interactions governed by
quadratic nonlinearities.
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