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Instability of Solitons Governed by Quadratic Nonlinearities
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Stability of two-wave solitous supported by resonant parametric interactions in a diffractive (or
dispersive) optical quadratic medium is investigated analytically and numerically. It is found that the
solitons can become unstable when the phase matching between the fundamental and second harmonics
is not exactly satisfied. The analytical criterion for the linear instability is presented, and it is revealed
that the instability leads to two possible scenarios of the soliton dynamics, either large-amplitude in-

phase oscillations of two harmonics or the soliton decay.
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It is well known that propagation of modulated quasi-
harmonic waves in dispersive (or diffractive) media of
various physical nature is usually governed by the non-
linear Schrodinger (NLS) equation (see, e.g. , [1]). How-
ever, the NLS equation is not valid near resonances with
the second harmonics excited due to a nonlinear (gener-
ally quadratic) response of a medium. If group velocities
of the resonantly interacting harmonics are essentially dif
ferent, dispersion effects are much weaker than the effects
of the wave walk-off and nonlinear interaction. In this
limit the equations describing three-wave interactions are
known to be exactly integrable (see, e.g. , [1], and refer-
ences therein).

When dispersion or diffraction become important, non-
trivial effects can be already observed for two interacting
waves due to solely parametric interactions. In applica-
tion to nonlinear optics, this means that the nonlinearity-
induced phase shift [2] and self-trapping of light beams
[3] can be achieved in the so-called yl l materials due
to the cascaded nonlinearities. It has been also shown
that the cascaded nonlinearities can support different types
of two-wave (spatial or temporal) parametric solitons [3—
10], which recently have been observed experimentally in
nonlinear planar waveguides [11].

Resonant interaction between the fundamental (w) and
second (v) harmonics in a diffractive (or dispersive) ~( l

medium can be described by the coupled equations for the
dimensionless variables [10],
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where z is the propagation distance and x stands for the
transverse coordinate (spatial solitons) or retarded time
(temporal solitons). The parameter o. describes either the
ratio of the wave vectors (spatial solitons) or the ratio of
the group-velocity dispersions (temporal solitons) of two
interacting waves. The parameter o. can be presented as
n = 2o. —6, where 5 is proportional to the wave vector
mismatch Ak = kz —2k~ between the harmonics, and it
can also include the walk-off effect [9,10].

The diffraction (dispersion) effects described by the
second-order derivatives in Eqs. (1) are crucial for the exi-
stence of localized (soliton) solutions. Stationary soliton
solutions of Eqs. (1) are presented by real functions w =
wo(x) and v = uo(x), which are independent of z. For
the particular value o. = 1 these solutions were first found
by Karamzin and Sukhorukov [3] and then reproduced
again in [6]. Recent numerical analysis [8—10] revealed
the existence of the soliton solutions of the system (1)
for any value of n and, moreover, it was also shown that
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