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Continuum Model for River Networks
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The effects of erosion, avalanching, and random precipitation are captured in a simple stochastic
partial differential equation for modeling the evolution of river networks. Our model leads to a self-
organized structured landscape and to abstraction and piracy of the smaller tributaries as the evolution
proceeds. An algebraic distribution of the average basin areas and a power law relationship between
the drainage basin area and the river length are found.
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A fractal river network is a striking example of self-
organized criticality. The physics of river network evo-
lution arises from an interplay of the structured landscape
governing the water How with the erosional effects of the
water feeding back into further sculpting of the landscape.
Extensive studies of the fractal characteristics of real river
networks have been carried out [1—7]. Hack [2] has stud-
ied the relationship between the length of a river l and the
area of a drainage basin s. s is a measure of the total area
of the land covered by the principal stream and its trib-
utaries that feed into the network. Hack's measurements
indicate that for basin areas s ranging over almost five
decades (up to 375 square miles), s —l4' with the expo-
nent 1/P —0.57. Other measurements of the distribution
of drainage basin areas suggest a power law scaling of the
form P(s) —s ' with r = 1.45 ~ 0.03 [1].

Most of the models of river networks fall into two cate-
gories. The first is restricted to reproducing the statistical
properties of networks [8]. More recently, models for the
evolution of river networks have been developed. Based
on careful studies of river data [1],Rinaldo et al. [9] have
suggested that the effects of local optimal rules equiva-
lent to critical erosion parameters lead to statistical char-
acteristics for the networks similar to global constraints
of minimum energy dissipation. Leheny and Nagel [10]
introduced a lattice model that incorporated erosion and
showed a competition in growth between neighboring
river basins relevant for late stages of evolution. Kramer
and Marder [11] have also constructed a lattice model
that allows for the elucidation of the scaling properties
of the large scale features of river networks. In addition,
they have proposed coupled differential equations for two
scalar fields, the height of the soil and the depth of the wa-
ter fiowing over the soil. An analysis of these equations
has led to an understanding to the shape and stability of
individual river channels.

Our principal goal is to introduce and numerically study
a simple stochastic partial differential equation for the
evolution of the landscape of a river network. Our model
is a field theory for the soil height h(x, t) and takes into

account the effects of random precipitation, erosion, and
the avalanching of soil. An initially smooth landscape
evolves into a nontrivial spatially self-organized state
in which Hack's law and the algebraic distribution of
drainage basin areas are obtained.

The evolution equation may be written in the compact
form

(8/Dt)h(x, t) = 13 h(x, t) —kV'h(x, t) + ri(x, t),

D [I~hi] = Di ~ 0 f I%hi ™,
D2 ( 0 if lv'hl ( M,

and the random noise g(x, t) —= er(x, t) is Gaussian
distributed with zero average and correlation

(rl(x, t)g(x', t')) = e 6"(x,x')6(t —t'). (3)
The equation describes the temporal evolution of a two

dimensional landscape with periodic boundary conditions
in the x direction and a dominant water Row in the y
direction due to an incline. The equation allows for or-
dinary diffusion in the y direction and a stabilizing 7' h
term working as an ultraviolet regulator. In the x direc-
tion, a diffusion term is operational as long as lych l ) M.
These diffusional processes mimic the avalanching effect
discussed by Leheny and Nagel: When neighboring sites
have large differences in heights, avalanching of the soil
occurs, leading to a smoothing effect. The erosional pro-
cesses are captured by the negative diffusion coefficient
Dz when lV'hl ( M. Such a term accentuates the height
difference and captures the physics of erosion —the wa-
ter fIowing in the shallower parts of the landscape erode
the soil further, increasing the height difference. In the
simple version of our model, the erosional processes are
blind —the erosion is uncorrelated with the water fiow.
Also, our analysis has been carried out in the limit of a
large underlying y slope so that the water How is directed
downhill and ordinary diffusion is operative in the y di-
rection. Large basins are known to have smaller overall

(2)

(1)
where D. —= Dire + Dz(l~v'hl)r7, and x =— (x, y). The
coefficient D (2lV'hl) is defined as
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slopes so that a less directed water path would be more
appropriate [9]. The noise TI mimics the erosional effects
of random precipitation. It should be noted that this noise
is an essential ingredient of the dynamics: Noisy initial
conditions would evolve into a Oat landscape under only
the deterministic part of Eq. (1).

Our equation is a generalization of equations devel-
oped in other contexts. In the limit that Di = D2 ) 0,
the equation reduces to the Edwards-Wilkinson equation
for linear growth processes [12]. When Di and Dz are
both positive but different, the equation is akin to Baren-
blatt's equation [13] describing the pressure in an elasto-
plastic porous medium that allows for the contraction and
expansion of the medium due to the How. The novel
ingredient in our equation is the possibility of a nega-
tive diffusion coefficient. As in sandpile models of self-
organized criticality [14], smoothing diffusional processes
kick in when the gradient exceeds a critical value. While
the sandpile models are driven by the random addition
of sand, here the instability is caused by the erosion and

k
X,

Di
(5)

h,
Ax/Dr

(6)

where Ax is the lattice spacing of the spatial mesh we will
be using. In the following, we shall omit the tildes. The
discretized version of the equation is

the noise. Our model evolves in a self-organized manner
to a noisy boundary separating stability and instability, as
do the sandpile models. In the sandpile case, there is a
well-defined interval between the addition of grains dur-

ing which the relaxation takes place. In contrast, the dy-
namics is continuously turned on in our model.

In order to discretize Eq. (1) it is convenient to work
with dimensionless variables t, x, h defined as

k t,D2

h(x, t + At) = h(x, t) + (Ayh(x, t) + D[IV'hI]A h(x, t)) 5 h(x, t) + v Atr(x, t) .
Ax4 (7)

Here 5, and A~ are discrete second derivatives in the x
and y directions and 5 is the discrete square Laplacian
defined so that the Fourier transform of 6 h does not
contain anisotropic terms to the leading order, and

1[I'"I~= D =D, /D, ~0;f IVhI(~'
Once the landscape reaches a self-organized state, we

obtain a measure of s by adding a test drop of precipitation
on each site and following its downhill descent along
the steepest path [1,10]. A drop at site (x, y) has three
possible destination sites —(x —l, y + 1), (x, y + 1), or
(x + l, y + 1). The site with the smallest h is selected.
On a given site, s is defined as the number of drops
collected on that site during the downhill evolution.

If we define P(s, L) as the density of sites with a total
How s on a landscape of linear size L, one may combine
Hack's law and the algebraic scaling of the river basin
areas into a generalized scaling form [15]

P(s, L) = s 'F(s/L~). (9)
Assuming that rivers are fractals with length l —L ',
the characteristic basin area s, —L@ —l@ ', implying
Hack's law with cb = P'/dF. In the present case we find

dF = 1, i.e., the rivers are self-affine, and thus @ = @'.
From the definition of s, it follows that its aver-

age g, P(s, L)s = (L + 1)/2, which combined with (9),
leads to the scaling law P = (2 —r) ' [16]. Further,
for r ) 1, the normalizability of P(s, L) in the L ~
IX limit imposes a constraint that lim, IIF(x) is uni-
versal and equal to r —1. Figure 1 shows a plot of
P(s, L) for different sizes L = 10, 30, 50, and 100 at
time t = 10. These results were obtained in the regime
where At/Ax —10 ~ well below the linear stability

limit At/Axz —0.25. The figures are then collapsed into
a single scaling plot (Fig. 2) with the choices of r =

3

and It = (2 —r) ' =
z [17]. Within the error estimates

of our analysis, these exponents are the same as obtained
in Scheidegger's static model [6] for river networks [18].
They are also within the range observed for real rivers
in the small basin limit. It should be mentioned that the
above scaling form is expected to be valid only in the
large s and large L regime. Long time runs on small
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FIG. 1. Plot of P(s) vs s for sizes L = 10, 30, 50, and 100
evaluated at the (absolute) time t = 10 in d = 2 + 1. The
values for the parameters are At = 0.01, Ax = 3.0, M = 1,
and D2/DI = —0.1.
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FIG. 2. Collapse of the curves of P(s) from Fig. 1 with
r = , , P =(2-—r)
systems are suggestive of a non-Scheidegger universality
class at large times. However, a quantitative study of this
regime appears to be beyond our present capability due to
computational limitations.

We have also monitored the temporal evolution of the
roughness of the landscape. The roughness W is defined

) 1/2

W(t) = (1/L ) g([h(x, t) —h(t)] )
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where h(t) = g„h(x,t)/L. The average was performed
over 300 samples corresponding to different realizations
of the noise. We find an intermediate regime with an al-
gebraic growth W(t) —tt with an exponent p = 0.21 ~

A

FIG. 4. A snapshot of a typical river network created by
our dynamics at two successive times t (a) and t' ) t (b).
Only sites with s ~ 30 are shown. The values of t and
t' correspond to 89980 and 90000 temporal iterations with
At = 10,Ax = 0.5, M = 1, and D2/Dl = —0.1. The ini-
tial condition was a flat configuration. The flow is constructed
as follows: Starting from a site (x, y) the water can IIow
only to one of the three sites (x + l, y + 1), (x, y + 1), or
(x —l, y + I), thus causing an overall flow downward (from
y to y + I). The choice of which of the three sites is deter-
mined by the relative heights of the corresponding h's (steepest
descent). In the region indicated by P one main stream, which
was present in (a), has been captured by a neighboring main
stream in (b) (piracy effect). An example of a stream present
in (a) which has disappeared in (b) (abstraction effect) is also
shown in the region A. The boundary conditions employed
were periodic in the x direction (perpendicular to the flow) and
free in the y direction (parallel to the IIow).
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FIG. 3. Temporal evolution of roughness Gq(t) = W (t)
The parameters used for the simulations were
At = 10,Ax = 0.5, M = 1, and Dq/DI = —0.1.

0.02 (Fig. 3). This exponent value is different from the
exactly solvable Edwards-Wilkinson model [12] where

p = 0, i.e. , W(t) —pint. At longer times saturation due
to finite size is observed. In this context, it is interesting
to note the recent work of Czirok, Somfai, and Vicsek
[20] on a geomorphological micromodel of mountains.
The evolution of river networks is shown in Fig. 4, where
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h(x, y;t)

(b)

FIG. 5. Landscape (a) and contour plot (b) at t' corresponding
to Fig. 4(b). Values for the parameters are the same as
Fig. 4(b)

only sites with s ~ 30 are shown, while the correspond-
ing elevation profile is shown in Fig. 5. The model cap-
tures some of the key ingredients of Glock's theory of
the evolution of river networks [5]—small tributaries are
eliminated as the main rivers swell in size. The figures
also show the effects of piracy in which a larger aggres-
sive stream captures the flow of a neighboring stream.
Such effects had also been shown to occur by Leheny and
Nagel [10] in their lattice model for river networks.

A more realistic model than the one presented here
would have coupled differential equations for the vari-
ables h(x, t) and the ]low s. Such a coupling would cap-
ture nonlocal effects present in real basins.
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