
Vor UME 75, NUMBER 3 PH YS ICAL REVIEW LETTERS 17 JULY 1995

Fluctuations and Stability of Fisher Waves
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We have performed direct Monte Carlo simulations of the reversible diffusion-limited process
A + A ~ A to study the effect of fluctuations on a propagating interface between stable and unstable
phases. The mean-field description of this process, Fisher's reaction-diffusion equation, admits stable
nonlinear wave fronts. We find that this mean-field description breaks down in spatial dimensions 1

and 2, while it appears to be qualitatively and quantitatively accurate at and above 4 dimensions. In
particular, the interface width grows t'12 —in 1D (exact) and -to~72 0007 i-n 2D (numerical).

PACS numbers: 82.20.Mj, 02.70.Lq, 05.90.+m, 82.65.Jv

One of the most well-known theoretical descriptions of
the dynamics of invasion of a stable phase into regions of
an unstable phase is given by Fisher s reaction-diffusion
equation [1,2]. Fisher's equation is

Bp = Dhp + kip —k2p
2 (I)

where p (x, t) is a local concentration characterizing
the state of a system distributed in space (x E R")
and evolving in time. The system under scrutiny is
characterized by diffusion coefficient D and positive rate
coefficients k~ and k2 characterizing the growth and
saturation processes described by the local dynamics.
Indeed, there are two homogeneous steady states,

concentration of the 8 species is in excess or otherwise
maintained at a steady level in order to sustain a nonequi-
librium state. We refer to Fisher's equation as a mean-
field description because the reaction terms are of the form
of the mass action rate equation approximation appropri-
ate for systems in local equilibrium, as might be expected
for reaction-limited kinetics. The wave-front propagation
problem for this system has recently been studied from

and

p = ki/k2, (3) (a)
the former being unstable while the latter is stable
(boundary conditions permitting, of course).

The invasion process is studied by considering initial
conditions consisting of a plane (say, xi = 0) front
separating a stable half space (with p = ki/k2 for xi ~
0) from an unstable half space (with p = 0 for xi ) 0)
as illustrated in Fig. 1(a). In the subsequent evolution the
front broadens out as the stable density moves into the
unstable region, as shown in Fig. 1(b). Although Fisher's
equation cannot generally be solved exactly, it can be
shown that the wave front approaches a steady, stable
wave-front profile p (xi, . . . , xd, t) = f(xi —ct) traveling
at constant speed c ) c~;„=2gktD, and satisfying the
simple nonlinear ordinary differential equation

See Fig. 1(c). The minimum speed is realized for initial
data with a sharp interface [3].

Fisher s reaction-diffusion equation can be viewed
as a mean-field description of the concentration of A-
species particles simultaneously undergoing diffusion and
the reversible reaction process A + 8 ~ 2A, where the

(b)

(c)

FIG. 1. The invasion process. (a) Initial profile with sharp
interface between the stable phase (left) and the unstable phase
(right). (b) The wave front begins to broaden as the front
moves to the right. (c) The asymptotic wave-front speed is
realized, and the wave-front width is w.
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the more fundamental microscopic viewpoints of molecu-
lar dynamics [4], lattice-gas cellular automata [5], and
multivariate master equations [6], though still in a limit
of reaction-controlled kinetics in each case.

Within the last decade it has been recognized that the
law of mass action breaks down for reaction-diffusion
systems in far-from-equilibrium conditions [7], most no-
tably in the diffusion-controlled limit in low spatial di-
mensions. The A ~ 2A reaction (suppressing the role of
8, presumed to be held at a steady concentration) has been
studied extensively in this regard [8], and in one spatial
dimension it has been solved exactly and shown to ex-
hibit a kinetic phase transition in the spatially homoge-
neous case —a completely new phenomenon outside the
realm of the mean-field mass action kinetics [9]. Mean-
field kinetics are expected to be valid in high spatial
dimensions, even in the diffusion-controlled limit. For
example, the concentration of A-species particles for the
irreversible coagulation process 2A ~ A decays -t
in 1D, -t 'lnt in 2D, and -t ' in accord with the mean-
field rate equation (dp/dt = —k2p ) in three and higher
dimensions [10]. Thus the critical dimension for the ki-
netics of the spatially homogeneous irreversible process
is two.

The diffusion-controlled wave-front propagation prob-
lem has also been solved exactly in one dimension [11].
The exact solution does not admit a stable wave front, sig-
naling the qualitative breakdown of Fisher's mean-field
picture. The wave-front width ~ grows with time as
w(t) —t' as the interface propagates in 1D (throughout
this paper we refer to the width defined as an ensemble
averaged width). Stable wave fronts may be expected in

high spatial dimensions when the mean-held kinetics take
over, so it is natural to wonder about the critical dimen-
sion for wave-front propagation.

In this paper we report the results of extensive direct
Monte Carlo simulations [12] of the wave-front propa-
gation problem for the diffusion-limited reaction process
A + A ~ A. We find that the wave-front width in 2D
grows in time as w(r) —to oo, while —in 4 and higher
dimensions the mean-field behavior holds both qualita-
tively [w(t) —r ] and quantitatively [the steady profile
shape is well described by Fisher's wave front, the solu-
tion to Eq. (4)]. In 3D the data are inconclusive, being
equally well fit either by a near-zero exponent or by a
logarithmic time dependence. These results indicate that
the critical dimension is 3.

The diffusion-limited reaction process A + A ~ A on
a d-dimensional square lattice with lattice spacing b,x is
shown in Fig. 2, where the microscopic rates are defined
for the diffusion, birth, and coagulation processes. Sites
are either empty or singly occupied. The equilibrium state
is a totally random distribution of occupied and unoc-
cupied sites: Balancing the overall birth and coagulation
rates as defined in Fig. 2, each site s equilibrium occupa-
tion probability is seen to be

(a)

(b)

FIG. 2. The rate of the diffusive hopping process, illustrated
in {a), is D/Ax, where D is the macroscopic diffusion
coefficient. The birth process is shown in {b): Occupied sites
spontaneously generate particles at one of 2D neighboring sites
at rate v/2b, x The coagula. tion process is demonstrated in {c)
where a particle hops onto a neighboring occupied site {at the
same hopping rate D/Ax ) and the single occupancy rule is
enforced, resulting in the net loss of a particle.

Peq Ll

The width was then computed via

1 Bpw(r)2 = x, (xt, t) dxt —Xi (r)
pgq Bx )

Ll

Peq L1
xtp(xt, r) dxt —I., —Xi(r)

p, q
——vox/(2D + vb, x).

In the simulations with Ax = 1, rates were chosen
to maintain peq =

~&
Time units in the simulations

correspond to 2D = 1.
The wave-front problem was simulated by consider-

ing a long lattice in the xt direction (—Lt ~ xt ~ L~)
with transverse length L = L2 = . = Ld and periodic
boundaries in the x2, . . . , xd directions. Initial configu-
rations corresponded to the equilibrium distribution for
xi ~ 0 and an empty lattice for xi ) 0. As the system
evolves, the density of particles projected onto the x& axis
was measured. The simulations were never carried so far
that particles were able to reach the xi = Li hyperplane.
The front position X~ (r) was computed from the ensemble
averaged density projected onto the xt axis p(xt, t), ac-
cording to the discrete version of

ap
Xt(r) = xt (xt, t) l dxt

)
L,

p(xt, t) dxt —Lt .
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FIG. 3. Raw Monte Carlo data for 2D simulations and
transverse systems sizes L = 4 (--, top), 16 (o), 64 (X), 128
(+), 256 (*),512 (~), and 1024 (--, bottom). All interfaces grow
diffusively (—Jt) at early times, crossing over to anomalous
scaling near t = 40. Then, at a later time which depends on
the system size, the scaling crosses back to simple diffusive
growth.

FIG. 4. Collapse of the Monte Carlo data by the scaling
hypothesis in Eq. (8), for system sizes L = 4 (--, right), 16 (o),
64 (X), 128 (+), 256 (*), 512 (~), and 1024 (--, left). The 2D
simulation data for times t ~ 50 are shown. The exponents
n = 0.272 and P = 1.00 have been adjusted to achieve the
best collapse of the data.

These summation expressions for the front position and
width are quite effective for providing quality data for
these quantities in the face of the inevitable statistical
fluctuations inherent in the simulated projected densities.

The raw data for d = 2 are plotted in Fig. 3. The
finite transverse size L leads to diffusive spreading-t' at late times, i.e., one-dimensional behavior. (The
early time diffusive transient occurs in all dimensions,
is independent of system size, and is well described by
Fisher's equation due to the lack of correlations in the
initial distribution of particles. ) At intermediate times a
region of nondiffusive wave-front spreading appears, for
increasingly long intervals as L is increased. Beyond
the early transient, the finite system data is collapsed by
invoking the scaling hypothesis [13]

w(t) = t F(t/L~). (8)

Figure 4 is a plot of w(t)/t vs t/Lt using the data
in Fig. 3 with n = 0.272 and P = 1.00, showing
validity and quality of this assumption. (Error estimates
on the exponents n = 0.272 ~ 0.007 and P = 1.00 ~
0.05 were obtained by varying them until the data
separated visibly more than the spread seen in Fig. 4.)
Because F(g) tends to a constant as s ~ 0, we conclude
that in an infinite system the wave front would continue
to spread -t — . The wave-front profile achieved a
self-similar form in the scaling regime, as shown in Fig. 5.

The raw data for d = 3 appeared qualitatively similar
to those for d = 2, but with a poorer fit by the scaling
ansatz in Eq. (8). Hence, other than observing that the
data were not inconsistent with a very low exponent
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FIG. 5. Rescaled 2D wave-front profiles in the Inoving frame,
illustrating the successful collapse of the wave fronts using
the width growth exponent n = 0.272. These are the data
for the simulation with L = 1024, at times t = 65.31 X
(3.300)", n = 0 (*), 1 (o), 2 (X), 3 (+), and 4 (~).

(w —tn'to) or logarithmic (w —pint) scaling, we are
reluctant to draw a quantitative conclusion.

The data for d = 4 are well described by the mean-
field value u = 0, as illustrated in Fig. 6, where several
profiles at different times (simulated at transverse size
L = 32) are seen to collapse with no adjustment to the
width. Moreover, mean-field theory provides an excellent
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isotropic autocatalytic process studied here suggest that
these features may define alternative universality classes.

It will be interesting to see if the nonequilibrium in-
terface growth process in diffusion-limited A + A ~ A

reported here is contained in a closure approximation to
the exact hierarchy of joint distribution evolution equa-
tions. Closures, which can be thought of as "improved"
mean-held theories, have been shown to qualitatively and
quantitatively capture some aspects of the anomalous ki-
netics of diffusion-limited reactions [15].
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FIG. 6. 4D wave-front profiles in the moving frame, illustrat-
ing the successful collapse of the wave fronts using the mean-
field width growth exponent n = 0. These are the data for the
simulation with L = 32, at times t = 43.87 X (1.348)", n =
0 (*), 1 (o), 2 (X), 3 (+), and 4 (~). The solid line is the
stationary discrete space mean-field profile using no adjustable
parameters.

+ lP.+t + 2(d —1)P. + P.-tel —~P.)j.
(9)

with
D v D v

2~.
where p„ is the marginal occupation probability of the nth
site on the xt axis. The steady-state profile in Fig. 6 (solid
line) is computed from this discrete space mean-field
theory with no adjustable parameters. (The wave fronts
are seen to broaden slightly as time evolves, refIecting
the approaching finite-size crossover back to diffusive
spreading. )

This study is complementary to recent research on
directed interface growth and roughening [13,14]. Models
of directed interface growth, studied both via Monte
Carlo simulations of lattice models and renormalization-
based theory of hydrodynamic equations, yield different
interface growth exponents than those reported here. At
first this may appear surprising. The particular point
of departure of the interface growth mechanisms has
yet to be identified, but the fundamental differences
between externally imposed, anisotropic growth and the

description of the profile: The spatially discrete version of
Eq. (1), projected onto the inhomogeneous direction with
mean-field rate coefficients, is

dPI2

dt
= ~[Pn+1 2Pn + Pn t]—


