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Tunneling in Mesoscopic Magnetic Molecules
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We present a theoretical study of magnetic relaxation of big molecules, Mn»O», at low temperature,
when the relaxation time ~ is temperature independent. If the magnetic field h, is not too low, tunneling
can only take place if energy is exchanged with phonons. Then, 1/r —h~ for weak h, . A steeper
increase is expected for higher h, . The effect of a transverse field h, is small. The maximum of r(h, )
observed experimentally at h, = 0.2 T might be due to tunneling without phonons in low field, with a
relaxation rate reduced by hyperfine interactions.

PACS numbers: 75.20.Ck, 76.20.+q

Recently discovered big magnetic molecules [1—4] are
of interest because of the gigantic relaxation time ~ of
their magnetization [4], which reaches two months in zero
magnetic field at 2 K in the Mn, 20, 2 molecule (often
called "Mn, 2") combined with acetate ions. A theory
of this relaxation time has been recently proposed [5]
in the case of thermally excited relaxation, and ~ was
shown to be given by an Arrhenius law, in agreement with
experiments above 2 K. However, recent experiments [6]
show that the Arrhenius law is not satisfied below 2 K,
and that 7. goes to a finite limit when the temperature
T goes to zero. The purpose of the present Letter is to
calculate 7. in terms of microscopic parameters and predict
its dependence on tunable parameters such as the external
magnetic field.

The experimental fact that ~ is the same in the periodic
crystal and in a dilute solution [7] shows that molecules
are not magnetically coupled to each other. In the absence
of magnetic field, each molecule has a double, Kramers
degeneracy in its ground state. The transition from one
ground state to the other is possible only if the molecule
jumps over a potential barrier 5 or tunnels through it.
Jumps over the barrier are efficient processes above 2 K
and were studied in Ref. [5]. Tunneling through the
barrier is the subject of the present work. The spin s of
the molecule will be assumed to be fixed and equal to 10,
in agreement with electron paramagnetic resonance (EPR)
[3] and inelastic neutron scattering [8] experiments, which
show that the lowest excited multiplicity corresponds to
s = 9 and lies rather high, about 6 = 30 I above the
multiplicity s = 10 in the Mn»O&2 molecule combined
with acetate ions. The energy barrier 5 can be deduced
from the Arrhenius law, and is about 61 K in the same
material. It may be associated with a spin Hamiltonian0, which can be derived from a perturbative treatment
of the spin orbit interaction I, - S. The molecule is
embedded in a tetragonal crystal; and, within second order

H,' = —C[S+ + S"]. (2)

which is the lowest order form allowed by tetragonal
symmetry. Tunneling as a consequence of (2) or similar
perturbations has been studied by many authors in the
case of mesoscopic systems [9—12]. However, this kind
of tunneling is possible only if the magnetic field h,
in the z direction is so weak that the Zeeman splitting
4p, ~h, s is lower than the zero-field tunneling splitting
Fi ~T. This is a consequence of energy conservation
and can be seen as follows: For h, = 0, there are
two low-lying eigenstates ~sym) and ~ant) of the total
Hamiltonian, which is the sum of (1) and (2). Let their
energy be 0 and hcoT, respectively. In the space of the
eigenvalues m of S', the wave functions ~sym) and ~ant)

may be written as real, symmetric, and antisymmetric
functions of m, so that (sym(S'(sym) = (ant~S'(ant) = 0

perturbation theory, the form allowed by the tetragonal
symmetry is

0 = —AS, .

An apparent paradox of the present model should
be pointed out: The energy difference 6 between the
multiplicities s = 10 and s = 9 is replaced by infinity
although it is lower than 5, which is not replaced by
infinity. This is paradoxical, but at least qualitatively
correct, because the effect which impedes the transition
between the two degenerate ground states of (1) is (in
the case of thermal activation) the height of the potential
barrier, which is the energy b, = 100A of the state (s =
10, m = 0). Taking states s = 9 into account would
increase the number of relaxation paths in the phase space,
but would not modify the barrier.

One might expect tunneling between states
(s=10, m=10) and (s=10, m= —10) to oc-
cur as a consequence of a spin Hamiltonian which does
not commute with S', e.g. ,
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and (antIS'Isym) = (symIS'Iant) =— s. If a field h,
is now applied, which is small with respect to the
energy of the higher levels, the eigenstates may be
approximated within lowest-order perturbation theory
by Isym)cosy + Iant) sincp, where tan2p = —2p, iih, X
(antlS'Isym)/&~T = 2p—ah, s/RcoT . If piih, »&
RcuT, tan p is close to 1 or —1. This means that the
eigenstates of the Hamiltonian are localized in the regions
m ) 0 and m ( 0, respectively. If the system is pre-
pared at time t = 0 in the state S' = —s, the probability
that it is still in this state two centuries later is close to
1. Thus, there is no tunneling if p, ~h, s && hcuT. The
elementary case of a spin 1/2, subject to the Hamiltonian
H = —h, S, —h S„ is a good illustration of this prop-
erty. In that case, RcoT = h . As will be seen, for large
s values, hcuT is much smaller.

Now, the tunnel frequency is, according to experiment,
extremely low (less than 1 month '); and, since a mag-
netic field of 1 T is equivalent to 2piis/kii = 13.4 K and
to a frequency cu = 2p, its/R = 2.8 X 10" s ', practi-
cally any magnetic field (that of the Earth or the demag-
netizing field) would destroy the tunnel effect, if it were
produced by the above mechanism.

In trying to explain the observed tunneling, two phe-
nomena have to be taken into account: hyperfine interac-
tions [13,14] and phonons [15]. The latter are the main
objects of the present study, where the importance of en-

ergy conservation will be emphasized. The former will be
naively described here as a random field, which is mainly
produced by Mn nuclear spins. The hyperfine field seen
by an electronic spin is [15] about 0.02 T. The resulting
random field seen by the total spin S has, therefore, a dis-
tribution of half-width 0.02 T. For higher fields, direct
tunneling can be expected to be negligible, and energy
conservation requires interactions with phonons of the
large surrounding system. These will be investigated in
the rest of this Letter. Note that angular momentum con-
servation also requires interaction with a large surround-

ing system [16].
We consider an experiment in which the sample is in

equilibrium in a negative field parallel to g at t = 0,
so that it is in the spin state I

—s). At r = 0, the field
is reversed, and we want to investigate the state of the
system at a positive time t. The transition to a spin state
Im) (with S, Im) = m Im)) is possible if a phonon of wave
vector q is created, the energy of which allows energy
conservation:

E + hcuq =E
In this formula, F. is an eigenvalue of the spin Hamilton-
ian

H, p
= —AS, —2p, iih, S, —C[S+ + S ]. (4)

In view of the weakness of the experimental tunneling
frequency, C is expected to be small, so that

&m =— —~m2 —2uahzm

If the field satisfies h, ( A, (3) can, therefore, only be
satisfied for m = s and reads

Rcoq = 2hz s . (6)

In practice, (6) can only be satisfied by acoustic
phonons. For the sake of simplification, only one phonon
mode will be taken into account. Extension to three
modes is straightforward.

In this Letter, we consider a single spin (a single mole-
cule) in an otherwise periodic crystal. Experimentally
[7], the relaxation time in such a system is the same
as in the perfectly periodic medium. The spin-phonon
interaction will be assumed to be linear with respect to
the local strain, which is (I/~N}g~iq u~, where u~
is the Fourier transform of the displacement and N is
the number of unit cells. In terms of phonon creation
and destruction operators, ct and cq, the spin-phonon
interactions should, therefore, have the form

p( —s*,vac m*, q) = Im*, qIH» &hI
—s*, vacI

X 6(E + he@~ —E,),
where the delta function corresponds to the requirement
of energy conservation, the central point of this Letter.
Substituting (7), one obtains

p( —s",vac ~ m*, q) = I( "Iv,l-.*)l'
NM cuq

X 6(E + Rcuq —E,). (8)

Summing (8) over q, one obtains the transition proba-
bility per unit time from the spin state I

—s ) to the spin
state Im*), namely,

p( —s* m*} = 2

l&m" IV I
s*)l

NM mq

X B(E + Rcuq —E,).

H» ph
——g [iqV~(S)ct —iqVt(S)c~],

2NM coq
(7)

where Vq is a function of the spin to be specified later,
which depends weakly on IqI for a given orientation

q/IqI, and M is the mass per unit cell.
In order to discuss the effect of the spin-phonon

interaction, it is convenient to introduce the eigenstate
Im*) of the spin Hamiltonian (4), as well as the states
Im*, q), where there is one phonon of well-defined wave
vector q, and the molecule is in state Im*).

At time t = 0, the system is in the state
I

—s, vac),
with no phonons and S, = —s. This state may be
approximated conveniently by the state I

—s*, vac), where
the molecule is in state I

—s*) and there is no phonon. The
interaction (7) induces transitions from this state to states
Im, q). The transition probability per unit time is given
by the "golden rule"
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The tunneling rate ~T is obtained by summing this
expression over m. Transforming the sum into an integral
and introducing the specific mass p, one finds

RMT
h

lv, i-s*)l2d'q l(m*
8~2p cuq

X 6(E + Rcu~ —E,). (9)

For the sake of simplification, an isotropic dispersion
law, mq = cq, will be assumed; and the spin-phonon
interaction, Vq = V, will be assumed to be independent
of q. Following Abragam and Bleaney [15], we also
multiply by the number 3 of acoustic phonon modes and
obtain the following formula, identical to Eq. (10.49) of
Ref. [15]:

~T, , l(s*l v I

—s*&l' (E-. —E.)' .
2m-h'c~ p

Using (3) and (5), one obtains

h~T =, , l(s*lVI —s*)I' (h, s)' (12)~63c5p
The phonon-assisted tunneling frequency is propor-

tional to the cube of the applied field h, when 2p, tih, &
A. This result is independent of the approximations
which, for the sake of simplicity, have been made (a
single phonon mode, isotropic dispersion, and V indepen-
dent of q).

We now have to worry about the structure of the
states Im*&. We shall first discuss the case 2p, Bh, ( A
when only the states Is") and

I

—s*), which are close to
the eigenstates Is) and I

—
s& of (1), are to be taken into

account. The perturbation due to the last term of (4)
couples spin states lm) and lm') with lm —m'I = 4, so
that Is") and I

—s*& have the form

ls*& = P A, 4~ Is —4p),

I
—s*& = g v-.+4, 1

—s + 4p&. (13)

For the molecule Mn»O», s is an even integer
(actually 10). Then, it follows from (13) that the only
terms of V~ which contribute to (12) are those which shift
S, by an integer multiple of 4. Such a lowest order term
1s

(4) (g ) g (4)s4 + g (4)s4 (14)

Thus, the second-order anisotropy has no effect. The
fourth-order anisotropy (14) is presumably much smaller,
so that a very small tunneling rate is expected. The

g l(m*lvl —s")I' (E, —E )'.
2~63c'p

(1o)
In moderate field (2p, sh, & A, i.e. , 0.45 T for

Mn, z0, 2) only the value s = m is consistent with (3),
and one can write (10) as

situation should change for magnetic fields h, sufficiently
larger than A/p, ii. If A ( 2p, zh, & 2A, the values m =
s and s —1 should be taken into account in (10), and
relation (12) is to be replaced by

s "&I (2h s)2~6'c5p-
+ l((s —1)*lv, l

—s')I' (h, —A) (2s —1)' .

(15)
Now, the lowest-order terms of (7) contribute. If, in the

spirit of Abragam and Bleaney [15], we assume that they
are due to the modulation of the ligand field by phonons,
they have the form

v,"'(s) = g,",'(s, s, + s,s.) + g(',)(s,s, + s, s, ).
(16)

The coefficients g
' are expected to be larger than the

g( )'s in (14), so that an abrupt increase of the tunneling
rate is expected when 2p, ~h, becomes larger than A. The
existence of terms linear in S and S& in the spin-phonon
interaction has also been suggested [16]. They would
not modify our analysis since they can also be inserted
into (15).

In order to go further, it is necessary to specify the
coefficients of the expansions (13). This will be done only
in the case 2p, ~h, ( A. The coefficients p„ for instance,
satisfy the equations

[A(s —4p) —h, (s —4p) + Es]p, ,+4p

= —C(—s + 4pis4
i

—s + 4p —4&p, , 4„4
—c(—s + 4pls+I —s + 4p + 4&p, ,+4&+4,

(17)
which for 1 ~ p ~ s/2 —1, can alternately be written in
the form

P —s+4p P —s+4p

where F. = E „and the coefficients K and L can easily
be deduced from (17). It is easily seen that L,+4„
is of order unity (actually comprised between 0.1 and
10), while K,+4„ is much larger than 1 for 1 ~
p ~ s/2 —1 if 2p, Bh, and Cs are much smaller than
A. A rough approximation is K,+4~(E) = A/Cs~. If
2p, i)h, « A, then p, ,+4„+4/p, ,+4„ is expected to be
small. Neglecting I. in (18), p, ,+4„ is seen to be of
order (Cs /A)~.

The matrix elements which appear in (9) when (13) is
inserted are

s/2

(s*ls',
I
—s*& = P x,* 4„p' 4p 4-

p=1

X (s —4piS+is —4p —
4&

and a similar expression for (s*lS4+I —s*). Each term of
this sum is roughly of order s (Cs /A)'t ', so that the
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sum should be of order s (Cs /A)'t '. A more careful
calculation, taking into account the dependence of K on p
in (18), yields

—
4Cs2

- s/2 —
&

l(s*l~+ I

—s*)
I
= l(s*l~+ I

—s*)
I

= s'l'

(19)
This result does not depend on h„but is only valid for

p, tth, « A. Collecting formulas (12), (14), and (19), one
concludes that in moderate fields (p, tth, & A) the phonon-
assisted tunneling rate is of order

384g4s 4Cs
~2e463c5p Ae2

where g4 is the order of magnitude of the coefficients g in

(14). If a q-independent interaction Vq (S) = g4(S+ +(4)

5 ) is assumed in (7), the perturbative result is given
exactly by (20) with an "="sign instead of "="(of the
order of magnitude of).

The zero-field tunneling frequency coT can be shown
to be approximately equal to (19) multiplied by 4C/hs.
Thus, it depends on the anisotropy as (Cs /A)'l ', as
already shown by Van Hemmen and Siito [10]. This
result is analogous to a formula obtained previously in a
slightly different case by Kornblitt and Shender [9]. The
much more abrupt decrease with increasing s, obtained
by Chudnovsky and Gunther [17], does not correspond
to the present situation. The maximum value hp of h,
which allows for tunneling without phonons, given by
4 As=a~ is

(20)

Pp p T~ -4C z-s/2 —
&

pphp = Cs S/2
Ae2

An applied transverse field h can also, in principle,
induce tunneling. The tranverse field-induced, phonon-
assisted tunneling rate decreases with increasing spin
s as (h, /As) ', a formula analogous to (20). For
a field of 0.8 T (or 2p, tth, /ktt = 1.07 K) along the x
axis, and for As = 6 K, this factor is very small (about
10 ), so that transverse field-induced tunneling is not
observable. Transverse held-induced tunneling without
phonons would only be possible for unphysical values of
h, . We conclude that a transverse field has no observable
effect. On the contrary, assuming g4 to be of order C, the
observed tunneling is compatible with (20) if 4Cs /'Ae is
about 0.03.
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Note added. —As we were preparing the revised ver-
sion of this Letter, we received a preprint [18] reporting a
detailed experimental investigation of the tunneling time
~ as a function of the external field h, . It was found
that 7. increases with decreasing h, for h, ) hM = 0.2 T
in agreement with (20), but then q. has a maximum and
a slight decrease for smaller fields. A tentative explana-
tion is the following: (a) The above theory is a correct
description of the model constituted by Eqs. (4) and (7).
(b) It describes experiments in Mn»O„, at least quali-
tatively, for h, ) 0.2 T. (c) In weaker fields, tunneling
without phonons occurs; but, because of hyperfine inter-
actions, the tunneling rate is much lower than the dis-
tance ~T between the states 5, = —10 and 5, = 10. The0

value hM = 0.2 T is about ten times as large as expected
from our knowledge of hyperfine interactions. This dis-
crepancy will be examined in a future article.
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