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Microwave Studies of Billiard Green Functions and Propagators
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In a microwave transmission measurement the Green function G(r, r', k) of a stadium billiard was
determined as a function of r' and k for fixed r. From this billiard wave functions were obtained
including the sign, which was not available earlier. The propagator K(r, r', t) was obtained by
Fourier transform of G(r, r', k). It is shown that K(r, r', t) supplies a very suggestive picture of
pulse propagation including pulse reconstruction by focusing effects. This can be considered as an
experimental verification of a work of Tomsovic and Heller, who found that semiclassical dynamics can
account for the quantum mechanical behavior of billiards over surprisingly long times.

PACS numbers: 05.45.+b

Irregularly shaped billiards are favorite models to study
the quantum mechanical properties of classically chaotic
systems. In the last five years microwave arialog ex-
periments have become a well-established alternative
to theoretical studies [1—4]. The experiments use the
fact that the time-independent Schrodinger equation and
the Helmholtz equation are equivalent. For quasi-two-
dimensional billiards even the boundary conditions for
the electromagnetic and the quantum mechanicaI systems
are identical. In the first experiments eigenfrequencies
of stadium-shaped microwave resonators were determined
[1,2], but soon the method was extended to the study
of eigenfunctions. There are two slightly different tech-
niques to achieve this. Sridhar used the fact that the
eigenfrequencies are shifted proportional to F. if a metal-
lic bead is moved through the resonator [3]. Alternatively,
F can be obtained from the depth of the resonance as a
function of the antenna position [4].

All experiments mentioned are incomplete insofar as
they determine only eigenfrequencies v, and the absolute
square of the wave function I P„(r)I as a function
of position. To get the complete quantum mechanical
information on the system, the billiard Green function

y 0.(r)0.(r') (I)k2 —k2

is required. k„is the wave number of the nth eigenfre-
quency. The Green function obeys the differential equa-
tion

(6 + k )G(r, r', k) = 6(r —r') . (2—)
In this Letter we report on the first experiment in bil-

liards where both the amplitude and phase of microwave
reAection and transmission coefficients have been deter-
mined. From these quantities the complete Green func-
tion is easily obtained, as will be shown below. This
allows a number of promising applications especially
in the field of mesoscopic systems (universal conduc-
tance Iluctuations, weak localization, etc.) [5]. From the
Fourier transform of the Green function the propagator

is obtained (with cu„=27r v„). In the semiclassical
approximation it can be expanded into a sum over
classical trajectories connecting points r and r' [6,7].
The propagator in a stadium was studied by Tomsovic
and Heller [8], who found a correspondence between
classical and semiclassical dynamics over times by far
increasing the so-called log time t = O(ln(h ')). The
exponential proliferation of the number of classical orbits
limited the calculation of the classical trajectories to
lengths corresponding to at most six horizontal traversals
through the stadium. Here the experiment may provide
an alternative. It should even be possible (though it was
not yet done) to identify the contributions of different
trajectories to the propagator by replacing parts of the
walls by absorbing material thus suppressing all paths
touching these regions.

To study billiard properties experimentally one has to
install one or more antennas allowing for the excitation
of microwaves. These antennas, on the other hand,
unavoidably disturb and change the system properties. To
describe reAection and transmission properties between
different antennas the 5 matrix is very useful. It is defined
by b=Sa, (4)
where a is the vector of amplitudes of the waves entering
through the different channels and b is the amplitude
vector of the outgoing waves. To establish a relation
between the 5 matrix and the Green function, we can
rely on results which have been derived in nuclear physics
many years ago (see, e.g. , Ref. [9]). To be self-contained
the derivation is repeated here for the billiard case. With
P(r, k) as the wave function within the billiard if waves
with wave number k are fed in through one or more open
channels. rP(r, k) obeys the Helmholtz equation

(5+ k)P =0. (5)
Close to the position of the ith antenna P can be written

as the superposition of an incoming and an outgoing
wave,

K(r, r', r) = g (/i„(r)P„(r')e (3)
Ho (k I

«' I) Ho (k I & « I)

Ho (kR) Ho (kR)
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(~) (2)
(assuming circular antennas with radius R). Ho and Ho
are Hankel functions. From Eq. (6) one gets for P and its
normal derivative on the surface S; of the coupling wire

=a; —b;,
1

[—(n + iP)a; + (n —tP)b;], (7)
n s, 2~R

where n and P are the real and imaginary parts of
2zrkRHo (kR)/Ho (kR) Us.ing Eqs. (2) and (5) and

(~)' (~)

applying the Green theorem one gets

A(r) = g G(r, r'), dP(r')
s Bn'

Equation (11) shows that up to a constant factor the
modified Green function G(r;, rj) is obtained directly
from the transmission amplitude S;~ between the two
antennas i and j. G(r;, r~) differs from the original
Green function (1) in two respects. First, the resonances
are shifted. This shift was used in Ref. [3] for the

ilia::::(ii:','ilia:::.Ski'WWW!ii)ilia

P.(r )0.(r, )~ kz —kz+ ~„—r„ (12)

~. = n g[O.(,)]', l. = P[p.(,)]'.
E l

Equations (11) and (12) are the billiard equivalent of the
Breit-Wigner formula of nuclear physics [9].

54

—P(r'), G(r, r') ds', (8)

where the sum is over all antennas. In real systems
there is an additional contribution from a surface integral
along the outer boundary of the billiard because of a
partial penetration of the field into the walls. An exact
treatment of this effect is beyond the scope of this Letter.
Phenomenologically, the walls can be taken into account
by introducing an additional channel.

The further evaluation of the integral is easy with help
of conditions (7). First one notices that the second term
on the right hand side of Eq. (8) is of O((kR) ). If
we restrict ourselves to the situation where R is small
compared to the wavelength, this term can be discarded.
Taking now for r the value of r~ and using Eq. (7) one
gets an equation system for the a;, b; which can be written
in matrix notation as

a —b = G[ (n + i—P)a + (n —iP)b], (9)
where the matrix elements of G are given by G;~ =
G(r;, rj, k). Comparing Eqs. (4) and (9) one gets the
wanted relation between the S matrix and the Green
function,

1 + (n+iP)G
1 + (n —iP)G

Equation (10) can still be considerably simplified if at
a given k value only one resonance k contributes to
G. Then the sum (1) reduces to just one term, and the
matrix elements of the denominator on the right hand
side of Eq. (10) are of the form M;J = B,J + cx;x~. It
is easy to verify that the elements of the inverse matrix
are given by M;~ = 6;J —bx;x~, where b = c/(1 +
c gk xk). Application to Eq. (10) yields

5;J = 6;~ + 2(cr + iP)G(r;, r~, k), (11)
where

T'q'

FlG. 1. Experimentally obtained wave functions for three
eigenfrequencies 3.228 GHz (a), 4.243 GHz (b), and 5.206 GHz
(c) of a quartered stadium (length a = 180 mm, width b = 135
mm, and height h = 8 mm). The upper parts of the figures
show the modulus of the corresponding signer function taken
on the energy surface and for y = 0. The abscissa corresponds
to x and the ordinate to p, /hk„, ranging from —1 to +1.
Classically, this is the cosine of the incidence angle of an
incoming classical particle. The right parts show the surfaces
of section taken at x = 0. Here the ordinate corresponds to y
and the abscissa to p~/hk„. The amplitudes were converted
to a gray scale. Black and white correspond to maximal and
minimal amplitudes, respectively.
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determination of wave functions. It is obvious from
Eqs. (13) that the sign of P cannot be obtained by this
method. Second, the resonances are broadened. Both
shift and broadening are unavoidable drawbacks in every
experimental determination of the Green function.

The applicability of 5-matrix theory to billiards was
demonstrated with high precision by Alt et al. [10] in a
recent experiment using superconducting cavities. The
same group studied the situation of closely neighbored
resonances [11], where the above derivation becomes
invalid. They found a complete agreement between their
experimental results and a multilevel expression derived
for the case of overlapping resonances.

To test the feasibility of an experimental determination
of Green functions, we studied microwave reflection and
transmission properties in a stadium-shaped microwave
resonator with two antennas. The measuring technique is
similar to that applied earlier [4]. The resonator consisted
of two parts: a ground plate with an antenna at a fixed
position and an upper plate with an excised cavity of the
shape of a quartered stadium containing another antenna.
The upper plate could be moved with respect to the lower
one allowing for a two-dimensional scan of the lower
antenna with respect to the billiard. The position of the
ground plate antenna was varied in steps of 5 mm in both
the x and the y directions leading to a total number of
about 1500 data sets. The diameter of the antennas of
0.5 mm was small compared to the wavelength in the
whole applied frequency region of 1.6 to 10 GHz. In
accordance with Eqs. (13) both width and position of the
resonance lines varied by some MHz while changing the
antenna position. The complete 5 matrix was determined
as a function of frequency in steps of 1 MHz using a
vector network analyzer, model 360B, Wiltron company.
A vector network analyzer is indispensable if all S-matrix
components are wanted. Strictly speaking, the 5 matrix
of the total system is always measured including cables,
connectors, etc. It is possible, however, to calibrate away
these unwanted features.

The measurement of Si2 as a function of I.2 allows
the determination of both modulus and sign of the wave
functions (in contrast to a S~~ measurement which gives
only the modulus). A variation of r& is not necessary
for this purpose, if only r], is not placed just on a node
of the wave function [see Eq. (12)]. There are a number
of quantities where both sign and modulus of the wave
functions are needed. We mention especially the Wigner
function

1+(Pq) =
(2

(14)
which has often been used to study quantum mechani-
cal phase space properties, especially in the semiclassical
region (see Ref. [7] for a review). p and q denote the
two-dimensional momentum and coordinate vectors, re-
spectively. In the semiclassical region the Wigner func-
tion should become concentrated along all periodic orbits

KE(r, r', t) =
277 l

I l ME d (15)

[the quantum mechanical propagator Ko(r, r', t) could
be obtained also by replacing k = cu/c in the argument
of the Green function by k = $2mcu/6]. For t = 0
KF(r, r', t) corresponds to a deltalike pulse centered at
r = r'. Experimentally, however, the integral on the
right hand side of Eq. (10) has to be cut off at a
certain cu „=2~v „.With the a v „of10 GHz
this leads to an experimental pulse width of 5r =
c/cu, „=5 mm. One may ask why the propagator is
not determined directly by sending a microwave pulse
through the billiard.

The reason is purely technical: It is much easier to
construct a microwave source for continuous waves in the
10 GHz frequency region than to build a pulse generator
able to produce pulses of length 10 " s.

Figure 2 shows a series of two-dimensional plots of
K(r, r', t) with fixed r for different times. The figure
allows an immediate interpretation. Starting at t = 0
a circular wave is emitted with a radius R increasing
with t according to R = ct Figure 3(a) show. s the
same situation in a three-dimensional plot. At t = 1.6 X
10 'o s [Fig. 2(b)] the wave reaches the upper bounds
of the billiard and is reflected. During reAection the

contributing to the wave function in question. This is
demonstrated in Fig. 1 (though one is here still far from
the semiclassical limit). Each of Figs. 1(a)—1(c) consists
of three parts. In the lower left the wave function is shown
as obtained in the experiment. The upper part shows one
surface of section of the corresponding Wigner function
calculated from the experimental values. It is taken at the
energy surface p + p = R2k2 and at y = 0 (the upper
right corner of the stadium is taken as the origin with x
and y axes pointing along the long and the short sides of
the billiard, respectively). In the semiclassical limit this
is just the Poincare section for a classical particle taken in
the moment of reflection at the upper boundary of the bil-
liard. The right part shows another surface of section of
the Wigner function, but now at x = 0.

The wave function in Fig. 1(a) represents a standing
wave between the long sides of the billiard and is
associated with the so-called bouncing ball orbit. In
the y = 0 surface of section semiclassically one would
expect contributions for p = 0 at all x values in the
region of the straight part of the stadium. Indeed the
Wigner function shows high amplitudes here. Figure 1(b)
is associated with another periodic orbit starting from
the upper right corner of the billiard in the southwest
direction. Here the x = 0 section shows high amplitudes
close to the classically expected regions. Figure 1(c)
finally shows a wave function with no clear indication of
a periodic orbit. The corresponding Wigner function, too,
looks rather structureless.

To look for the billiard pulse propagation properties [8],
we calculated the electromagnetic propagator from
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FIG. 2. Two-dimensional plot of the electromagnetic propa-
gator Ke(r, r', t) with fixed r for different times t/I 0 o s =
0.36 (a), 1.60 (b), 2.90 (c), 3.80 (d), 5.63 (e), 9.01 (f), 10.21
(g), 12.05 (h), 14.18 (i), and 19.09 (j).

FIG. 3. Three-dimensional map of KE(r, r', t) for two times
t/10 '0 s = 0.36 (a) and 9.01 (b) corresponding to Figs. 2(a)
and 2(f), respectively.

phase of the wave changes by m which is nicely seen
in Fig. 2(c). After some more reflections the original
pulse is destroyed, and the amplitude is more or less
uniformly distributed. But after a considerable elapse of
time a sudden reconstruction of the pulse is observed
[Figs. 2(f) and 2(g)]. Figure 3(b) shows the situation
of Fig. 2(g) three-dimensionally. The cause for this
observation is the well-known focusing property of the
circle. A similar phenomenon was already found in our
earlier reflection measurements in the same system [4].
This is an experimental visualization of the results of
Tomsovic and Heller [8]. For times corresponding to the
reciprocal distance between neighboring eigenfrequencies
(typically several tens of MHz) the propagator becomes
reminiscent of the individual eigenstates, which limits
the applicability of semiclassical quantum mechanics to
times smaller than 10 s. The maximal times accessible
(limited by the experimental line width of about 5
MHz) exceed this value by a factor of 10. Thus the
complete transition region between classical and quantum
mechanics is within the range of the experiment.
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