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The dynamics of a two-state system coupled to an Ohmic continuum, the dissipative two-state system,
is solved by exploiting its connection to the Kondo problem and the inverse-square Ising model. Such a
system is known to possess a zero temperature quantum critical point. In the quantum disordered phase
the asymptotic dynamics is always an incoherent power-law relaxation. At short times, the system can
exhibit damped oscillations only over a limited range of parameters.
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A two-state system, coupled to an environment that
renders its dynamics dissipative, is ubiquitous in physics
[1]. It defines a prototype that can simulate the behavior
of a host of complex and interesting problems. It is,
therefore, unfortunate that the dynamics of such a system
is still poorly understood, Ref. [1] not withstanding.
In the present paper we solve the dynamics at zero
temperature. In view of recent developments in the field
of high temperature superconductivity, where an analogy
to the two-state system is drawn [2,3], the stated problem
has acquired a new sense of urgency. The phenomenon
in question is the c-axis transport in the normal state of
the high temperature superconductors [4].

The connection between the dissipative two-state sys-
tem and the Kondo problem was recognized by one of us
[5]. This led to the realization that such a system pos-
sesses a quantum critical point at zero temperature. How-
ever, this connection was never fully exploited. Here, we
shall show that it is extraordinarily fruitful and leads to a
clear physical picture and accurate quantitative results for
the dynamics of the system. In a sense, the present paper
is the logical conclusion of a line of reasoning begun by
Anderson and Yuval [6].

The two-state system coupled to a dissipative environ-
ment is defined by the Hamiltonian

1 1
Ht, — zoo., + H„, + 2oz C~x~,

throughout the paper we set h = k~ = 1. The environ-
ment consists of an infinite number of harmonic oscilla-
tors and is represented by the Hamiltonian H„,. The o 's
are the Pauli matrices and (x ) are the coordinates of the
oscillators. The spectral density, J(co), of the environ-
ment is given by

J(co) = g(C /m to ) 6(co —co ),2

where m and ~ are the masses and the frequencies,
and [C j the coupling strengths. We shall consider the
Ohmic bath, for which J(co) = 2~n to, for co ( to„and
J(co) = 0 for co ) co, . The partition function has the

well-known Coulomb gas form [7]:
d z2~

Zts
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X exp 2n g(—1)'+'
i(j
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X ln sin
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In this expression we have neglected as irrelevant the
interactions between the charges that fall off as (I/r)',
x ~ 1. To model an actual physical system, including all
its high energy details, one needs not only the discarded
terms, but also an infinite number of operators beyond
those kept in Eq. (1). The neglected terms do not affect
the low energy behavior and are, in any case, beyond the
scope of the present paper.

Consider the inverse-square Ising model [6] with the
set of spins, (5;), located on N lattice sites of a one-
dimensional lattice of length L; L = Na, where a is the
lattice spacing. For this model, and for the Ohmic two-
state system, some rigorous mathematical results are now
available [8]. The Hamiltonian, Ht, is

(3)

g ~t5'i+i-
l

Jzjt (~/N) 5;Sj
2, sin [7r(j —i)/N]

'

(4)

where JL~ is assumed to be positive, while J~~ is allowed
to have any sign. By a transformation, the partition
function of the Ising model, ZI, can be cast into the same
Coulomb gas language [6]. The charges are the kinks in
the Ising model. This Ising model is thus a particular
regularization of the Coulomb gas model ~

The fugacity, y, of the kinks is given by
y = e ~' " t ' " '+ ~, where y is Euler's constant.
Here, y plays the role of Ar, /2 and pt Jzg the role of cr.
The parameter ~, maps to the lattice spacing of the Ising
model and p/r, to N. The quantity pt is the inverse
temperature of the Ising model.

Finally, consider the anisotropic spin-half Kondo
Hamiltonian, where the spin-spin coupling in the z
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direction is denoted by J~~ and that in the x-y plane by J&.
The partition function for the Kondo impurity can also
be cast in the Coulomb gas language [7], using the same
assumptions with respect to the low energy behavior.
Now, Ji p plays the role of A~, and 1 —

J~~p plays
the role of n, where p is the density of states; the high
energy cutoff is given by I/p.

The dynamical information is contained in the correla-
tion function C(t) = Re(tr, (t) o., (0)). At finite tempera-
ture, the average is the equilibrium average, defined by
the total Hamiltonian; at T = 0, it is the ground state av-

erage. Here, o., (t) is the Heisenberg operator at time t

By contrast, in Ref. [1] a quantity called P(t) is defined.
It is the conditional average (tr, (t)), where o., is known to
be + 1 at t = 0 and the oscillators adjusted to this state of
the spin. Although the evolution for t ~ 0 is determined

by the full Hamiltonian, the average is taken with respect
to the initial state. For most applications, this correlation
function is not relevant, as the initial state is orthogonal
to the true ground state. As time evolves this initial state
will dissolve into the exact ground state. Thus, P(t) ex-
presses the equilibration at initial times.

Consider the special value of n, n = 1/2, at which the
Hamiltonian can be diagonalized exactly. It can be shown

[9] that P(t) = e ', where A = ~A /4', . In con-
trast, C(t) = [(2'/vr) fo de e '"/(e + A )] . Asymp-
totically, C(t) —4/7r Jt t, refiecting the critical nature
of the Ohmic heat bath. In Ref. [1], extensive use was
made of an approximation called "the noninteracting blip
approximation. " Within this approximation, it was found
that P(t) = C(t) and P(t) = e ', and therefore, within
this approximation, C(t) must be e ', which is incor-
rect. The logical conclusion is that the noninteracting blip
approximation fails, at least at n = 1/2. Below, we shall
see that this approximation is, strictly speaking, incorrect
almost everywhere in the parameter space.

We calculate C(t), or equivalently its spectral represen-
tation. To do this, we exploit the equivalences described
earlier and consider the inverse-square Ising model. First,
the imaginary time correlation function, C(~), is obtained
from Monte Carlo simulations of the inverse-square Ising
model [10]. The number of sweeps through the lattice
was chosen to be 8 X 10, of which 10 sweeps were
used to equilibrate the system. Next, the Fourier trans-
form C(cu„) at the Matsubara frequencies, cu„= 2~n/P,
was obtained: C(tu„) =

f& dr e' "'C(r). Finally, the
Pade approximant method of Vidberg and Serene [11]
was used to analytically continue to the real axis. This
method was also briefly, but successfully, considered by
Hirsch [12] in a similar problem.

First, we address the definition of correlation length in
the inverse-square Ising model. The correlation length
in the Ising model translates to the Kondo temperature,
T», of the Kondo problem. It is a theorem [13] that the
spin-spin correlation function cannot fall off faster than
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FIG. 1. N/T&gl = r, /~» = r, /~„as a function
of 1/N = r, /p 0: pJJ~~ = 1..0, pIJI.» = 0.7;
pl JWiV 0.5 pl JLR 0.7 + pl JNX 1.0 pI JLR
X: pl J~~ —0.5, pt Jl.tt = 0.5; c" pl(Jew = 1.0,
pIJLR = 0.2; and 0: pIJ&z = 0.5, plJLq = 0.4. The
inset shows the data collapse onto a universal scaling curve.

the interaction, in this case ~ ~i
—j~ . From confor-

mal field theory [14], the asymptotic decay of the imag-
inary time spin-spin correlation function in the Kondo
problem is rigorously known to be (I/r); at finite P,
this is [7r/P sin(err/P)] . Our numerical calculation, de-
scribed below, precisely confirms this result, constituting
an excellent check of the numerical methods. Therefore,
in the absence of an exponential decay, the conventional
definition of the correlation length does not apply. We
note, however, that the asymptotic inverse-square decay
changes to a slower decay at shorter length scales. The
crossover scale can be defined to be the correlation length,

This definition is similar to the Josephson defini-
tion of the correlation length in the ordered phase of the
isotropic Heisenberg ferromagnet [15]. There, the Gold-
stone behavior in the ordered phase is strictly enforced by
symmetry [16]. The Josephson length separates the short
distance critical behavior from the long distance Gold-
stone behavior.

Now, one can describe the Kondo crossover in terms of
finite size scaling [10] of the inverse-square Ising model.
The susceptibility of the Kondo problem, yz, is related
to the susceptibility of the Ising model by Tt Jt t/N =
Jt'»/r, For Na. & g„T ~ T», the system appears
ordered and T&~&/N = (M2) —N2/N = N [17].
other words, ~» —1/T, because 1/N ~ T Howeve. r,
for Na ) s„ the Ising model appears disordered. By
a random walk argument, Tt Jtt/N = (M ) —N/N = 1.
Thus y~ saturates as T ~ 0. As we approach the phase
transition of the Ising model, s, grows and T» decreases.
The finite size scaling is demonstrated in Fig. 1, where
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we show the data collapse of g~ onto an universal scaling
curve.

As mentioned earlier, the Pade approximant
method is used to analytically continue C(tu„)
from the positive Matsubara frequencies to the real
axis. The imaginary part is the response function
g"(ni) =

2 f dre' '([rr, (t), o.(0)]), which is a
real and odd function of co. The spectral function
5(ru) = ~"(ru)/cu is therefore determined, as is the
spin-spin correlation function. The number of Matsubara
points used in constructing the Pade approximants was
129. The most important aspect is the accuracy of the
data for the imaginary time correlation function.

For n = 0, 5(cu) is a sum of two 6 functions at
cu = + 5, which we shall call the "quasiparticle" behav-
ior, signifying the coherent oscillations of the two-state
system. For finite, but small n, one may expect these
peaks to survive. This is not always the case. In the
Ising picture, and in the limit of vanishing J~iv (large 6)
and small JL,it (small n), (5;5j) is entirely determined by
the inverse-square part of the Ising model. In this limit,
C(ru„), analytically continued to real frequency ru, has an
imaginary part that is proportional to ~cu~, as ~u 0. The
resulting 5(co) is broad and centered at tu = 0, and the
quasiparticle picture is destroyed. As J~ is increased,
JL~ remaining small, the J~~ term can force the spins
to be correlated over the correlation length of the near-
est neighbor Ising model, as there are no restrictions on
the slowness of the decay of the correlations. Therefore,
the dynamics at short times can show quasiparticle be-
havior and the spectral function can exhibit quasiparticle
peaks. That the spectral function must be finite at cu = 0
follows from the rigorous inverse-square decay of the cor-
relation function. In turn, asymptotically, C(t) —1/t
The damped oscillation can be present at shorter times,
depending on the parameters. The noninteracting blip
approximation [1] incorrectly produces a power law de-
caying slower than I/t, proportional to I/t2(' ) for
n 4 1/2. The numerical results confirming the above
picture are shown in Fig. 2.

Now suppose that we hold Jzz sufficiently large such
that the spectral function shows quasiparticle peaks for
sufficiently small JLz. As JL,~ is increased, that is, n
is increased, the quasiparticle peaks shift towards cu =
0, broadening at the same time; the weight at co =
0 increases, because the spin susceptibility increases.
At n = Pt Jt,R = z, the quasiparticle peaks disappear
entirely, for all J~~. As shown in Fig. 3, the numerical
results accurately confirm the analytical result, serving, in
addition, as a valuable check on the numerical methods.
As n is increased further, critical slowing down sets in
and the peak at ~ = 0 sharpens. This leads to a 6
function below the transition and is due to the long range
order present in the inverse-square Ising model. The
above picture is confirmed in detail in Fig. 4.
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FIG. 2. S(co) plotted as a function of cu for pI JL~ = 0.2;
the solid line: PIJ~~ = 1.5; the dashed line: PI J~~ = 1.0; the
dotted line: PI J~~ = 0.5. P/r, = 256.
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FIG. 3. S(co) at n = 1/2.
results for P/r, = 256.
triangles (Pl J~& = 0.5) are
T=0.

The solid lines are the numerical
The circles (PJJ~~ = 1.0) and
plots of exact analytical results at

To summarize, in the entire parameter space, the
asymptotic behavior of C(t) is incoherent. At shorter
times, and for n ~ 1/2, the system can exhibit damped
oscillations, or the quasiparticle behavior, if Jzz is
sufficiently large, that is, if 5 is sufficiently small, not
large, as one may have naively guessed.

It has been argued [2,3] that the c-axis motion of
electrons in high temperature superconductors have broad
similarities with the dynamics of a two-state system
coupled to a dissipative bath. From the present analysis,
it appears that the generic behavior, over almost the entire
range of the parameter space, is incoherent, independent
of a. Coherent behavior for short times exists only
over a limited domain. The weak coupling fIow of
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the renormalization group equations is not particularly
revealing with respect to the dynamics of the system [18].
Even when the flows indicate a growth of 5/cu„which is
the entire region of the delocalized phase, the dynamics is
rigorously incoherent over much of the parameter space.
The lack of exponential decay of the correlation function
in the disordered phase of the inverse-square Ising model
is responsible for the incoherent dynamics of the two-state
system. Note, however, that s, is finite and well defined.
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