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Foam Mechanics at the Bubble Scale
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By focusing on entire bubbles rather than films or vertices, a simple model is proposed for the
deformation and Bow of foam in which dimensionality, polydispersity, and liquid content can easily be
varied. Simulation results are presented for the linear elastic properties as a function of bubble volume
fraction, showing a melting transition where the static shear modulus vanishes and the relaxation time
scale peaks. Results are also presented for shear stress versus strain rate, showing intermittent How via
avalanchelike topological rearrangements and Bingham-plastic behavior.

PACS numbers: 82.70.Rr, 05.40.+j, 83.70.Hq

The mechanical response of aqueous foams to applied
forces is complex, exhibiting both an elastic and a vis-
cous character. Foams behave as elastic solids for small
applied shear stress and yet How like viscous liquids at
large applied shear stress [1]. Just above the yield stress,
the flow is intermittent and mediated by nonlinear re-
arrangement events in which several neighboring gas bub-
bles suddenly hop from one tightly packed configuration
to another. Similar geometrical packing and rearrange-
ment phenomena dictate the mechanical behavior of such
diverse systems as emulsions, colloidal suspensions, and
granular media, and are reminiscent of stick-slip dynam-
ics in earthquake faults, charge-density waves, and Aux
line lattices. Foams are ideal systems for studying such
dynamics in that the interacting elements can be isolated
and examined in the context of bulk liquid interfaces and
soap Alms; consequently, much is known about the mech-
anisms for storing and dissipating energy [2]. Neverthe-
less, the connection between these microscopic details and
the macroscopic behavior is not well understood, in part
because of the importance of structure and nonlinear dy-
namics at an intermediate length scale set by the average
bubble size.

The traditional starting point has been to consider the
foam a two-dimensional periodic array of polyhedral bub-
bles with zero liquid content [3]. This has been gener-
alized for computer simulation to incorporate both ran-
domness [4,5] and a finite amount of liquid at the film
junctions [6,7]. However, this approach is nontrivial to
implement in three dimensions and at high liquid volume
fractions; furthermore, only the static response has so far
been considered. An alternative generalization incorpo-
rates both randomness [8] and realistic local dynamics [9],
but focuses strictly on the motion of the film intersection
points, ignoring all other degrees of freedom, and thus
cannot be applied either in three dimensions or at nonzero
liquid content. In this Letter, I propose a simple bubble-
scale model in which randomness, dimensionality, and
liquid content can all easily be varied, and demonstrate
that it successfully reproduces the hallmark features of
foam rheology. By explicitly introducing an intermediate
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where Fo is set by surface tension, b is set by viscous
drag, and where the sum includes only neighboring bub-
bles j, which satisfy ~i; —

»1~ ( R; + Ri. An exter-
nal force, F;, whose components give the pressure and

length scale, this work facilitates the connection between
the microscopic structure and the macroscopic behavior
of an important class of materials; it also highlights the
essential role played by random packing effects and re-
arrangement dynamics, and thus may provide insight into
other systems as well.

The new model is constructed by summing pairwise
interactions between neighboring gas bubbles as approxi-
mated in terms of their center positions fr;) and radii (R;).
No degrees of freedom are introduced for details of the
bubble shapes, the motion of the continuous liquid phase,
or the behavior of the adsorbed surfactants; time evolution
of the size distribution is not allowed. The first interac-
tion considered is strictly repulsive and originates physi-
cally in the energy cost to distort bubbles. If the distance
between the centers of two otherwise isolated bubbles is
greater than the sum of their radii, they will remain spher-
ical and are assumed not to interact. If brought into con-
tact, however, their shapes will distort and the increase in
surface area will cause a repulsive central force propor-
tional to the gas-liquid interfacial tension a- that is nearly
harmonic [10—12]. This effect can be modeled by the
compression of two springs acting in series where the in-
dividual spring constants scale with the Laplace pressures,
o./R;. The second force considered is due to dissipation
in the liquid between moving bubbles. It is assumed to be
pairwise additive and proportional to the velocity differ-
ence of neighboring bubbles; this is the simplest form for
a viscous drag. Since inertial effects are negligible, the
total force on each bubble center must add to zero. The
equation of motion for bubble i can then be written as
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shear stress, is applied to edge bubbles in order to main-
tain the desired volume fraction and shear strain or strain
rate. The average velocity of the neighbors of bubble I', is
taken here as (vi) = yy;x, where y is the imposed shear
strain rate, y; is the coordinate of bubble i in the velocity
gradient direction, and x is the unit vector in the imposed
flow direction. Other choices are possible, but this is the
simplest computationally, is correct in the limit of very
high liquid content, and, in any case, cannot affect results
for static elastic properties.

By comparison with previous models, the advantages of
Eq. (1) are its simplicity and natural applicability to foams
of arbitrary disorder, liquid content, dimensionality, and
strain rate. And while previous models are based on a few
of the fundamental rules governing the behavior of soap
films and interfaces that would presumably be part of a
complete ab initio treatment, Eq. (1) is based on a simple
caricature of all such effects. Details at the soap film
and surfactant scales are subsumed into phenomenological
parameters, and what emerges is a microscopic relaxation
time, rd = b(R)/Fo, set by the average bubble size
and the competition between mechanisms for storing
and dissipating energy. This general approach should
allow reliable study of deformations and flows at length
scales greater than the average bubble size. A potential
drawback is that is cannot accurately describe very dry
foams, since no degrees of freedom are introduced for
the bubble shapes. Because the overlap of bubbles is
only discouraged Eq. (1), but not forbidden, such dry-
foam limiting behavior as the divergence of the osmotic
pressure cannot be captured. Whereas previous attempts
to incorporate finite liquid content start from the dry-foam
limit, the model presented here is complementary in that
it starts from the wet-foam limit.

Simulations are performed for two-dimensional square
systems of N X N bubbles. As depicted in Fig. 1, the
top-N and bottom-N edge bubbles are held at fixed height
and relative positions, as though stuck to movable plates,
while periodic boundary conditions are imposed to the left
and right. The bubble radii are randomly drawn from a
triangular distribution that peaks at (R) and vanishes at
(1 ~ 3/4)(R); the value of (R) is chosen according to
the desired liquid content. This gives a size distribution
that approximates results for two-dimensional foams that
coarsen by the diffusion of gas from smaller to larger
bubbles. Initially relaxed configurations are obtained by
first equilibrating the top and bottom edge bubbles and by
next equilibrating the bulk bubbles while simultaneously
translating the top and bottom edge plates. This is all
done by updating bubble positions according to Eq. (1)
using standard molecular dynamics simulation techniques.
As evident from Fig. 1, the resulting structures closely
resemble tightly packed bubbles in real foams.

To quantify the static elastic properties, two distinct ex-
periments are performed starting from a relaxed configu-
ration. First, a constant shear stress is applied to the edge
bubbles, and the system is reequilibrated by the motion

FIG. 1. Structure formed by a 6 X 6 polydisperse array
of bubbles with P = 1. Configurations are shown before
(dotted circles) and after (solid circles) a sudden structural
rearrangement at constant dimensionless shear strain rate of
j ~d = 10 ~. The bubble-center trajectories are also shown,
with the final positions denoted by solid symbols.

of the edge plates and bulk bubbles according to Eq. (1).
Second, a small homogeneous shear step strain is imposed,
and the system is reequilibrated by the motion of the bulk
bubbles alone. Results for the static shear modulus G,
defined as the lateral force per unit edge length, or shear
stress o ~, divided by the shear strain y, are identical for
both experiments. Linearity is confirmed by changing the
sign as well as the magnitude of the strain; values of G are
constant throughout the range 10 (

~ y ~
( 10 . For

larger strains the response becomes nonlinear, and eventu-
ally bubble rearrangements and flow are induced.

Simulation data for G and the perpendicular force
per unit edge length, or pressure P, are displayed in
Figs. 2(a) and 2(b) as a function of the total area
fraction P occupied by gas bubbles. Evidently, both
measures of the elastic character decrease for smaller

and vanish continuously at a critical area fraction
of P, = 0.841 ~ 0.002. As shown by Fig. 2(c), the
average number Z of spring contacts per bulk bubble
decreases from about 5.5 to 3.7 as the gas fraction is
lowered to P, . Such a melting, or rigidity loss, transition
has been inferred from previous simulations to occur at
approximately the same coordination number and liquid
content [6,7, 12], corresponding to random close packing
of polydisperse disks. The expected critical coordination
number is 4; the smaller result found here may be due to
degrees of freedom lost in fixing the edge bubbles [13].
While earlier work was restricted to @ ) @, + 0.05 and

G(@)/G(1) ) 0.5, the data presented here are on larger
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systems and extend to both sides of @, so that the nature
of the transition can be studied in greater detail.

The effect of disorder on the melting transition can be
seen by comparison of the P dependence in Fig. 1 with
predictions for a periodic hexagonal array of uniform disks.
For pressure, Eq. (1) gives P„= ~3(1 —QP„/@) where

P, = 7r/12 =—0.9096. As shown by the dashed curve in
Fig. 2(b), this has the same magnitude and approximately

FIG. 2. Static shear modulus (a), pressure (b), coordination
number (c), and stress relaxation time (d) as a function of gas
area fraction. System size is N X N with N being 6 (dots),
12 (pluses), 18 (triangles), or 32 (circles). Each data point
represents a different set of bubbles, and the scatter is smaller
for larger systems. Solid curves represent the average behavior
for the largest system.

linear P dependences as the simulation data. While
disorder has only slight inhuence on pressure, it more
dramatically alters the magnitude of the shear modulus and
how it vanishes. For uniform disks, Eq. (1) gives G„=
v 3 (Q@/@„—3/4), which increases discontinuously at
the melting transition from G„(P„+) = ~3/4. By contrast,
the shear modulus data in Fig. 2(a) are typically smaller by
a factor of 4, and, to within statistical uncertainty, vanish
continuously at @,.

The behavior of both P and G can be understood in
terms of the average number Z of spring contacts per
bubble. Above the melting transition, this coordination
number varies empirically with gas content as Z —Z,. ~
(@ —P, )~ where 0 = 0.5 ~ 0.1, as shown by the solid
curve in Fig. 2(c). Physically, the pressure should be pro-
portional to both the average number of springs per bub-
ble and their average compression, P ~ Z(@ —P,.). This
form, shown as a solid curve in Fig. 2(b), agrees well with
the simulation data. For the shear modulus, the simula-
tion data are well described by G ~ (@ —@,), shown as
a solid curve in Fig. 2(a). This supports the rigidity perco-
lation picture of the melting transition, where G ~ Z —Z,
is expected for two dimensions [6]. As the liquid content
is increased, contacts are lost and the modulus decreases,
finally vanishing when a network of compressed bubbles
no longer percolates across the sample. Recent measure-
ments on monodisperse emulsions show, by contrast, that
the shear modulus and osmotic pressure have similar @ de-
pendence, inconsistent with rigidity percolation [11]. The
main differences between the experiments and the simu-
lations conducted here lie in the dimensionality and poly-
dispersity of the systems studied. Thus, it would be inter-
esting to perform further simulations of Eq. (1), system-
atically varying the polydispersity in both two and three
dimensions.

During the step-strain measurements of Figs. 2(a) and
2(b), data were also collected for elastic energy vs the time
after the imposed deformation. This relaxation always
showed a slow initial decay followed by an exponential
cutoff. The time constant ~, for the final relaxation is
displayed in Fig. 2(c). For gas fractions far below P, , r„
approaches ~d, indicating that all relaxation is from pairs
of bubbles brought into contact by the step strain, while
far above $„7„is larger and approaches a constant that
depends on the system size. As the melting transition at @,.
is approached, from either above or below, the relaxation
time reaches a maximum. This suggests the presence of a
diverging length scale, consistent with rigidity percolation.
It could also reAect the difficulty of a glassy system in
finding the minimum-energy configuration. In any case,
the data of Fig. 2(c) show that when the static shear
modulus vanishes below @„the foam does not simply
melt into a Newtonian Quid; rather, it changes from a
viscoplastic solid into a viscoelastic liquid.

Consider the dynamics of bubbles while the foam is be-
ing sheared macroscopically at a steady rate, j. By con-
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FIG. 3. Average and maximum stress vs dimensionless ap-
plied shear strain rate, taken over 0 ( y ~ 10 for the array of
bubbles shown in I ig. 1. Error bars denote rms fluctuations
about the average, and the solid curves is a fit to Bingham-
plastic behavior. The inset shows the actual stress vs strain for
several dimensionless strain rates as labeled.

trast with the linear behavior above, steady shear flow in-
volves large scale motion and topological rearrangements
of neighboring bubbles. An example of such an event is
shown in Fig. 1 for a small system at dimensionless applied
shear strain rate, or Deborah number, of y ~d = 10 ~. Ev-
idently the rearrangement even consists of a core of bub-
bles that undergo topology change surrounded by a halo
of bubbles with fixed neighbors that respond elastically.
Similar events have been seen in earlier simulations [7,9],
and have also been detected experimentally by diffusing-
wave spectroscopy [14—16]. As depicted in Fig. I, they
are avalanchelike in that the bubble motion is sudden on
the time scale for noticeable plate motion.

The avalanchelike nature of rearrangements can also be
seen by sudden drops in either the shear stress or the total
elastic energy as a function of time. The inset of Fig. 3
shows the shear stress cr z vs shear strain, y = j ~, for
the same system of bubbles as in Fig. 1 driven at various
rates. All exhibit an initial linear increase, consistent with
the previously measured static shear modulus, followed
by considerable fluctuations beyond a yield strain of
y, = 0.07. For sufficiently small strain rates, a limiting
behavior is reached characterized by the gradual buildup
of stress followed by sudden release via topological
rearrangement. With increasing strain rates, the average
stress level increases the fluctuations smooth out. These
observations are consistent with the intermittent flow
behavior seen in [9] as well as the claim that foams exhibit
self-organized criticality in the limit of small driving rates.

The behavior of the shear stress as a function of the
imposed strain rate can be quantified by an average and
maximum value, shown in the main plot of Fig. 3; results
are based on strains throughout the range 0 ( y ~ 10.
As evident already from the inset, the average stress
increases monotonically from a constant at small j . The
quantitative trend is well described by the Bingham-plastic
model, which is often used to analyze the behavior of
real foams: o. , = a, + p,„j, where a-,, and p, ~ are

phenomenological parameters called the yield stress and
plastic viscosity, respectively [I]. The solid curve through
the maximum stress data in Fig. 3 is a fit by this form,
giving a~ = 0.020 and p, ~

= 4.87.d. The formeris larger
than Gy,„, but the same order of magnitude, and the
latter is comparable to the relaxation time 7, A similar
analysis for a 12 X 12 system gave p, z

= 107.d, again
consistent with 7, Thus, the spherical bubble model
correctly reproduces the Bingham-plastic flow behavior
of foams and given insight into the value of the yield
stress and plastic viscosity in terms of the linear rheological
behavior.

In conclusion, a new model has been constructed for the
molecular dynamics simulation of foam rheology in terms
of structure and dynamics at the bubble scale, and has been
shown to reproduce the hallmark behavior. The minimum
set of ingredients needed to produce these phenomena
include mechanism for storing and dissipating energy,
as well as random packing and rearrangement effects.
Such ingredients are present in other forms of condensed
matter, such as emulsions, colloidal suspensions, slurries
and clays, and granular materials, where inertial and/or
thermal effects must also be considered. These ingredients
are also present for systems such as charge density waves
and disordered flux line lattices, where pinning effects
are important. In this sense, the model presented here is
perhaps the simplest example of a broad class of dynamical
systems exhibiting elastic, plastic, and fluid behavior.
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