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A New Phase of Tethered Membranes: Tubules
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We show that fluctuating tethered membranes with any intrinsic anisotropy unavoidably exhibit a
new phase between the previously predicted "Oat" and "crumpled" phases, in high spatial dimensions
d where the crumpled phase exists. In this new "tubule" phase, the membrane is crumpled in one
direction but extended nearly straight in the other. Its average thickness is RG —L ' with L the
intrinsic size of the membrane. This phase is more likely to persist down to d = 3 than the crumpled
phase. In Flory theory, the universal exponent v, = 3/4, which we conjecture is an exact result. We
study the elasticity and fluctuations of the tubule state, and the transitions into it.

PACS numbers: 64.60.Fr, 05.40.+j, 82.65.Dp

Tethered membranes are of great interest in large part
because their behavior is much richer than that of poly-
mers, their one-dimensional analog. Specifically, poly-
merized membranes have been predicted [1] to undergo a
"crumpling" transition between the "crumpled" and long-
ranged orientationally ordered "fiat" phases. This apparent
violation of the Mermin-Wagner theorem is made possible
by "anomalous elasticity" [1,2]: Thermal fluctuations in-
finitely enhance the membrane s effective bending rigid-
ity K, stabilizing the orientational order against these very
fluctuations.

Most past theoretical work [3] has been restricted
to isotropic membranes. Here we consider intrinsically
anisotropic membranes and find that this seemingly in-
nocuous modification has profound and surprising con-
sequences: An entire new and heretofore unanticipated
phase of the membrane, which we call the "tubule" phase,
ubiquitously intervenes between the crumpled and "flat"
phases (see Fig. 1). Only in the special case of perfectly
isotropic membranes, which follow a path like P2, is a
direct crumpled-to-flat (CF) transition possible. Generic
paths like P~ have two phase transitions, crumpled-to-
tubule (CT) and tubule-to-flat (TF), which we are cur-
rently studying in an e-expansion [4].

There are a number of possible experimental reali-
zations of anisotropic membranes. One is polymerized
membranes with in-plane tilt order. Fluid membranes
with such order have already been found [5]; it should
be possible to polymerize these without destroying the
tilt order. Secondly, membranes could be fabricated by
crosslinking DNA molecules trapped in a fluid membrane
[5]. Performing crosslinking in an applied electric field
would align the DNA and "freeze in" the anisotropy in-
duced by the electric field, which could then be removed.

Simulations could be done on, e g. , triangular or
rectangular nets of balls and springs with all of the
spring constants in one direction different, by a factor
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FIG. 1. Phase diagram for anisotropic tethered membranes
showing the Hat, crumpled, and new tubule phases.

of order 2 or so, from those in the other direction.
Equivalently, one could have different bond lengths in the
two directions, or use second nearest neighbor springs of
different strengths to create different bend stiffnesses in
the two directions. Any such modification whatsoever will
lead, upon renormalization, to a membrane with all of the
anisotropic terms we consider here, and, hence, will fall
into the universality class of our model.

The defining property of the tubule phase is that the
membrane is crumpled in one direction (y), but "flat" in the
other. Its average shape is a long, thin cylinder of length
Ry = L X O(1) and radius RG(L~) (( L~, where Ly
and L~ are the intrinsic dimensions of the membrane. The
tubule radius RG, and its undulations h, transverse to the

y axis, obey the scaling laws

RG(Lg, Ly) ~ Lg, (1)
h~s(Li, Ly) = Ly~ft (&Ly/(ALi)'), (2)
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where the universal exponents z = (1 + v, )/2, g = (1—
v, )/[2(l + v, )j are (I, A is an ultraviolet cutoff,
fi, (u) const for u 0 and fh(u) ~ u ~ ~, for u

For general spatial dimension d, Flory theory treatment
of the self-avoidance (SA) predicts v, = 3/(d + 1), sug-
gesting that the tubule phase should be stable down to
the lower critical dimension d~, = 2, where v = 1, and
therefore should exist in 3D, predicting v& = 4, which

7 1
implies that z = s, and g = —,4. However, the analogous
Flory result for the crumpled phase v = 4/(d + 2) has
more recently been called into question. Numerical simu-
lations [6] find no crumpled phase below d = 4. An
uncontrolled Gaussian approximation [7,8] supports this
finding, predicting v = 4/d, which suggests that di, = 4
for the crumpled phase. Both this and the numerical val-
ues of v for d ~ 4 agree well with the simulations.

The same approximation for the tubule phase [4] gives
v = 7/(3d —5), which suggests that di, = 4 for the
tubule phase as well. However, despite its success for the
crumpled phase, this Gaussian approximation is known
to be far from trustworthy. For example, it predicts
p = 2/d for linear polymers, which not only is less
accurate than the Flory result v = 3/(d + 2), but also
incorrectly predicts dI, = 2 for polymers, when, in fact,
it is well known that dh, = 1 in that case.

Whether the Gaussian approximation is any more
reliable for our tubule phase remains an open question.
One could argue that a slice perpendicular to the y axis
through our tubule looks like a SA random walk in two
dimensions, for which the Flory result of v = 3/4 is
known to be exact, while the Gaussian approximation
v = 1 is clearly wrong. Whether or not this analogy
holds, it is clear that SA, though a relevant perturbation,
is much less important for tubules than for the crumpled
phase, since points on the membrane widely separated
in the y direction never bump into each other in the
tubule phase, while they do in the crumpled phase. So
it seems quite plausible, the Gaussian approximation

notwithstanding, that the tubule phase is stable in d =
3. Furthermore, the suppression of the crumpled phase
by SA makes the possibility of the new tubule phase
even more interesting and important. Whether the tubule
phase does survive in d =—3 can be determined only by
simulations and experiments on anisotropic membranes,
both of which we hope our work stimulates.

In the following discussions, numerical estimates for
the values of the exponents will be obtained from the

3
Flory estimate, v& =

4 in 3D; these numbers should be
taken with a grain of salt, due to the uncertainties just
discussed about the validity of the Flory theory.

Equation (2) implies that h,~, (L) ~ L' "' = L'~,
for a square membrane with L ~ —L~ =—L, using
limL u = ALy/(ALz)' ~. In the "linear polymer"

3/2 z(3/2 —f) 3/2 v(+ 1/2
limit Ly )) L~, h~, ~ Ly /Lg =Ly /LJ

3/2 S/4
Ly /L~ . Defining L p to be the value of Ly at which
h~, = L~, we obtain the orientational persistence length

2vt+ 1 5/2
Lp ~ L~' = L~ . For any roughly square membrane,
L~ is much less than Lp, hence the tubule phase is stable
against thermal fluctuations as L ~ ~.

Like the tlat phase [1,2,9], the tubule phase exhibits
anomalous elasticity; however, as discussed above, SA is
a strongly relevant perturbation in this new phase. The
tubule, swelled by the SA interaction, acts for L~ &&
L' = A '(AL~)' like a polymer with bending rigidity

1+2v, 5/2
~p(Lg) ~ LgRG ~ Lg ' = Lg

Our model for anisotropic membranes is a gen-
eralization of the isotropic model [10]. We char-
acterize the configuration of the membrane by the
position r(x) in the d-dimensional embedding space of
the point in the membrane labeled by a D-dimensional
internal coordinate x. In the physical case, D = 2 and
d = 3. The Landau free energy F is an expansion in the
local tangent vectors 8 r(x), keeping only the leading
terms consistent with global translation and rotation
invariance:

d x~ dy v~(Bzr) + vy(B r) + a~yB r Bzr + t~(B r) + ty(8yr)

(gJ. gJ~)2+ yy(g . g )2+ (gJ~ g )2+ «(gJ . gJ )2

+ very(B r) (ayr) + d x d x h (r(x) r(x )), (3)

where the ~'s, t's, u's, and v's are elastic constants, and b
is the SA interaction strength. The first three (~) terms in
F represent the anistotropic bending energy of the mem-
brane. The elastic constants t~ and t~ are ~0 at high
temperatures and (0 at low temperatures. When both are
positive, the membrane crumples. When either is nega-
tive, the membrane extends in the associated direction,
and the u and v quartic terms are then needed for stabil-
ity. Equation (3) reduces to the model for isotropic mem-
branes [10] when ti = ty, ~t J Ky, Kgy = 0, uyy

——

4(v + u), ups =
ugly

= 4u, and v~~ = v~y = 4v.

In mean-field theory, we seek a configuration r(x) that
minimizes the free energy Eq. (3). Since the curvature
energies a~(B~r) and ey(B r) vanish when r(x) is
linear in x, we seek these minima by inserting the ansatz
ro(x) = (g~xz, gyy, 0, 0, . . . , 0) into Eq. (3). For now
neglecting the SA interaction,

1 D —1F = —L~ 'Ly tyg + t~(D —I)s'~J

+ very(D —1)g~g (4)
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1
F,i=—

2
dD 'x~ dy ~(82h) + t(B h) + g~(B u)

-2
+ gy By u + (Byh)y y , (5)

K =
Kys t = t& + vJ yPy s gy: uyyPy /2s2 =— 2

+
ugly gy

.
and gg

where u~~ = v~~ + u~~/(D —1). Minimizing F over
gz and gy yields two possible phase diagram topologies.
For u~~uyy & v~y, we obtain Fig. 1. Both gq and g~
vanish for t~, ty ~ 0. This is the crumpled phase: the
entire membrane, in mean-field theory, collapses into
the origin r(x) = 0 for all x. In our new y-tubule

Phase, characterized by i't = 0 aad Sr = /I lrlrarr~
0, the membrane is extended in the y direction but
crumpled in the J directions. The J -tubule phase
is the analogous phase with the y and 2 directions
reversed. The tubule-flat boundary slopes are uyy/v~y
and

very/uz

z, respectively. In the flat phase, both gz and

g~ 4 0. For u~ ~ uyy ( v~y, the flat phase disappears and
is replaced by a direct first-order transition from J -tubule
to y-tubule along the locus ty = (v~y/u~~)t~.

The flat and crumpled phases of anisotropic membranes
in Fig. 1 are in the same universality class [11]as those of
isotropic membranes [1]. In the crumpled phase, t~, ty &
0 and all other local terms in Eq. (3) are irrelevant at

long wavelengths. A change of variables xz = x' tJ ty

makes the remaining energy isotropic.
We now consider the effects of fluctuations, ignoring

SA (i.e., the "phantom" membrane). Consider the y-
tubule phase. To treat fIuctuations, we perturb around the
mean-field solution by writing t.(x) = (gyy + u(x), h(x)),
where h(x) is a (d —1)-component vector orthogonal to
y. Inserting the above expression for t into Eq. (3) and
keeping only relevant terms gives Ft„= FMFT + F,~,0—i 2 4where FMFT 2 Lz Ly[tyf& + 4 yuyP&],

&lh(x) I')
d qg dqy

(2')D
1 S/2-0

Lg+ Kqy

clearly revealing that the upper critical dimension is
D„, = 5/2. Below D„„we expect anomalous elasticity.
However, this anomaly is not manifested in the ffuctua-
tions of h alone. We can see this by integrating out the
phonons u exactly. The only remaining anharmonicity in

the effective elastic free energy for h alone is

F.„,[h] =—
l,k2,k3

[h(k)) h(k2)] [h(k3) . h(kg)]

&& (ki k2)(k3 . k4)Vh(q),

where q = kq + k2 and kq + k2 + k3 + k4 = 0. The
effective vertex is Vt, (q) = gyg~q+/(gyq + g~q~),
and is irrelevant for D ) 3/2, as can be seen by simple
power counting. Thus in 0 = 2, the elastic constants
t, g&, and Ky are finite and nonzero as qy ~ 0.

However, gy is driven to zero as qy ~ 0. In a self-
consistent one-loop perturbative calculation, similar to
that successfully used to compute the anomalous elasticity
in the flat phase [9], we find

Note that the ratios of the coefficients of the quadratic

(Byu) and the anharmonic tl, u(B, h) and (il, h) terms
in F, ~

must be exactly 4:4:1, since they must appear to-
gether as a result of expanding the rotationally invariant
combination [Byu + 2 (B,h) ] . This ratio allows us to
calculate exactly the long-wavelength anomalous elastic-
ity of "phantom" tubules, as we will show in a moment.

The propagators can be read off from Eq. (5),
giving (h;(q)h~( —q)) = ktiT6;~Gh(q), (u(q)u( —q)) =
ksTG„(q), where Gh (q) = tqz + t~q, , G„'(q) =
g J q + + gy q, and 6;~ i s a Kronecker delta when both
indices i and j 4 y, and is zero if either i or j = y. The
rms ffuctuations in the harmonic approximation are

gy(q) = g,'— (ksT)'g,'(q) p,'(p —q, )'d 'p dp, /(2~)

!

[tpi + t~(p)py4][tlpi —qual' + t~(lp —ql)(p, —q, )']
'

where g is the "bare" value of gy. The above argument

shows that tr(p) can be replaced by a constant, since the h
elasticity is not anomalous. This self-consistent equation
can be solved by the ansatz gy(q) = q""fg(qy/q~) with

g = 2, g„= 5 —2D, which we have verified works to
all orders in perturbation theory.

We now compute the phantom tubule diameter
R~ and transverse wandering roughness h „de-
fined by RG —= (l h(L ~, y) —h(0~, y) l ), h

(lh(x~, Ly) —h(x~, 0)l ). Because h, and RG re-
ceive large contributions from q~ = 0 and qy

= 0 zero
modes, respectively, R& and h „surprisingly, scale

in different ways with the membrane dimensions L &

and Ly. Taking into account the zero modes, we cal-
culate h, and R~ by equipartition, and find the forms
Eqs. (1) and (2) with z = 1/2, v, = (5 —2D)/4,
and f = 2v, . For a nearly square membrane
L ~ —Ly —L ~ ~, for which ALy && (AL ~ )', we

obtain h~, tyd L /L~ tx L o~2 Thus for a D =2.{D—~)/2

phantom tubule, h, ~ L. Unlike the ffat phase, no
ln(L/a) correction arises, so the (D = 2) phantom tubule
is just marginally stable, but with wild transverse undula-
tions. These are greatly suppressed by SA, to the effects
of which we now turn.
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We begin by estimating the radius of gyration using
Flory theory. Specializing henceforth to the physical case
0 = 2 for simplicity, we estimate the SA energy E$A
as E$A = bUp, where the volume V in the embedding
space occupied by the tubule is V = RG Ly, and the
density p in the embedding space of the tubule is p =
M/V ~ Li Ly/V, where M is the mass of the membrane.
Putting these together gives EsA ~ LyLi /RG

Inserting our earlier, phantom membrane result Rg ~

L& (for D = 2) and taking Li ~ L, as required by
ij4 2

S—(d —i)/2
anisotropic scaling, we find that E$A ~ Ly , which
goes to infinity as Ly ~ (x for d ( 11. Thus SA
is strongly relevant, and changes the long wavelength
behavior of the membrane, for d ( 11.

We can calculate R~ for d ( 11 by combining the
above estimate of E$A with a similar scaling estimate of
the elastic energy yielding

EFL tyg + uyyg + t~ LiLy + b
(RG 2 LyLg
(Li gyRG

(9)

Minimizing this over RG, we obtain RG(L~) ~ L~, with
v, = 3/(d + 1). For the physical case d = 3, this gives
v, = 3/4. Since a slice through the tubule traces out a
crumpled polymer embedded in 2D, we conjecture that
v, = 3/4 is an exact result for the tubule thickness, since
it is for 2D polymers. For a square membrane Ly —L~,
it is straightforward to argue that the qy

= 0 zero modes
do not contribute to Rg, and L& is the dominant infrared
cutoff. Hence Eq. (1) gives the correct radius of gyration.

This highly nontrivial ground state for the SA tubule
is not modified by thermal fluctuations. That is, even
at T ) 0, the variation of R~ with Lz is completely
dominated by the SA energy, i.e., determined by a T = 0
fixed point. This can be seen by evaluating the elastic
(or SA) energy with RG(Li) given by this SA ground
state. For an L X L membrane, this energy E,i ~ L@,

0 = 6/(d + 1) =
2 (for d = 3), is »kttT as L ~ ~.3

Using a generalization of Landau's derivation of shell
theory we now calculate anomalous elasticity in the pres-
ence of SA. Bending the tubule with radius of cur-
vature R, » RG induces a strain e —RG/R„which
costs an additional elastic energy density gy (Ly, L i )e
g, (L, , Li) [Rc(Ly)/R, ] . Interpreting this additional en-
ergy as an effective bending energy density tcy (L&, Ly)/R,
leads to the effective bend modulus tcy(Li, Ly),

tcy(Li, Ly) —gy(Li, Ly)RG(Li, Ly) .

Inserting tcy(Li, Ly) = Ly f (ALy/(AL~)'), gy(L&, Ly)
= Ly ""fg(ALy/(ALi)'), RG(Li, Ly) = Li'fR(ALy/
(AL~)') into the above expression, we obtain a relation
between the exponents 2v, = z(g + rI„), which is
satisfied by our earlier results for the phantom tubule.

The physical SA tubule at T = 0 is absolutely straight
(i.e. , fy = 1 exactly). This implies that the tubule stretch-
ing elastic constant g, = g, its bare value, since there are

neither fluctuations nor SA effects to renormalize it (in
contrast to ~). Therefore zI„= 0 at T = 0; Eq. (10) then
implies that Kp for the T = 0 SA tubule is already anoma-

lous, and given by Kp(q) = qy
" 'f (qyA'/Aq J ).

The effective free energy describing thermal fluctuations
about this nontrivial, SA ground state is

F ff z Kp(q)q + tqi ~h(q)) . (11)
1 dqi. dqy 4

2 277 2

Balancing the ~q term in this expression with the tq&
term gives the anisotropy of scaling exponent z, defined
by qy ~ qi. We thereby obtain z = 1/(2 —v, /z), which
gives z = (1 + v, )/2. Now calculating the fluctuation
corrections to gy from Eq. (8) using the wave-vector
dependent sc found above, we find that the integral in
Eq. (8) converges in the infrared and gy is finite as q ~ ()

provided 2 ) z (1 —p, ). If v, is anywhere near its Flory
value v, = 3/4 in D = 2, d = 3 this condition is clearly
satisfied. Thus unlike the phantom, the SA tubule has
rI„= 0, even at T ) 0. Using this fact in Eq. (10) and
taking the Flory expression for v, in d = 3, we obtain,
z=(1+ v, )/2= s, q=4v, /(I+ v,)= 7, zJ„=O.12

Using Eq. (11) to compute the transverse tubule undu-

lations h~„we find h~, = Ly fh(ALy/(AL~)'), where

g = — —(1 + 2v, )/(2z), and fh(x) = x '+ "' ' and
fh(x) = const for x ~ ~ and x ~ 0, respectively. For
a roughly square L X L membrane, we are always in
the x ~ ~ limit of the crossover function fh(x), which
implies that the rms transverse undulations of the tubule
are given by h~s —L '+ ' —L' . Similar argu-
ments applied to RG yield Eq. (1).

We [4] are currently investigating the effects of SA on
the tubule phase in d = d„—e. The scaling theory
of the tubule-to-Oat and crumpled-to-tubule transitions,
along with a Flory theory for these transitions, will be
presented in a future publication [4].
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