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We show that fluctuating tethered membranes with any intrinsic anisotropy unavoidably exhibit a
new phase between the previously predicted “flat” and “crumpled” phases, in high spatial dimensions

d where the crumpled phase exists.

In this new “tubule” phase, the membrane is crumpled in one
direction but extended nearly straight in the other.

Its average thickness is Rg ~ L with L the

intrinsic size of the membrane. This phase is more likely to persist down to d = 3 than the crumpled
phase. In Flory theory, the universal exponent v, = 3/4, which we conjecture is an exact result. We
study the elasticity and fluctuations of the tubule state, and the transitions into it.

PACS numbers: 64.60.Fr, 05.40.+j, 82.65.Dp

Tethered membranes are of great interest in large part
because their behavior is much richer than that of poly-
mers, their one-dimensional analog. Specifically, poly-
merized membranes have been predicted [1] to undergo a
“crumpling” transition between the “crumpled” and long-
ranged orientationally ordered “flat” phases. This apparent
violation of the Mermin-Wagner theorem is made possible
by “anomalous elasticity” [1,2]: Thermal fluctuations in-
finitely enhance the membrane’s effective bending rigid-
ity k, stabilizing the orientational order against these very
fluctuations.

Most past theoretical work [3] has been restricted
to isotropic membranes. Here we consider intrinsically
anisotropic membranes and find that this seemingly in-
nocuous modification has profound and surprising con-
sequences: An entire new and heretofore unanticipated
phase of the membrane, which we call the “tubule” phase,
ubiquitously intervenes between the crumpled and “flat”
phases (see Fig. 1). Only in the special case of perfectly
isotropic membranes, which follow a path like P,, is a
direct crumpled-to-flat (CF) transition possible. Generic
paths like P; have two phase transitions, crumpled-to-
tubule (CT) and tubule-to-flat (TF), which we are cur-
rently studying in an e-expansion [4].

There are a number of possible experimental reali-
zations of anisotropic membranes. One is polymerized
membranes with in-plane tilt order. Fluid membranes
with such order have already been found [5]; it should
be possible to polymerize these without destroying the
tilt order. Secondly, membranes could be fabricated by
crosslinking DNA molecules trapped in a fluid membrane
[5]. Performing crosslinking in an applied electric field
would align the DNA and “freeze in” the anisotropy in-
duced by the electric field, which could then be removed.

Simulations could be done on, e.g., triangular or
rectangular nets of balls and springs with all of the
spring constants in one direction different, by a factor
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of order 2 or so, from those in the other direction.
Equivalently, one could have different bond lengths in the
two directions, or use second nearest neighbor springs of
different strengths to create different bend stiffnesses in
the two directions. Any such modification whatsoever will
lead, upon renormalization, to a membrane with all of the
anisotropic terms we consider here, and, hence, will fall
into the universality class of our model.

The defining property of the tubule phase is that the
membrane is crumpled in one direction (y), but “flat” in the
other. Its average shape is a long, thin cylinder of length
Ry = LY X O(1) and radius Rg(L1) < L, where Ly
and L, are the intrinsic dimensions of the membrane. The
tubule radius R, and its undulations A, transverse to the
y axis, obey the scaling laws

RG(Ly,Ly) = LY, (1)
hams(L 1, Ly) = LS fu(ALy /(AL L)), ()
t yi -""'P1
: #  CRUMPLED
1-TuBULE  Ei=Ey0
£,>0, ¢ 70

Y-TUBULE
C‘L:O, 4 y>0
FLAT
£,>0. ¢ y>0

FIG. 1. Phase diagram for anisotropic tethered membranes
showing the flat, crumpled, and new tubule phases.
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where the universal exponents z = (1 + »,)/2,{=(1 — notwithstanding, that the tubule phase is stable in d =
v:)/[2(1 + v,)] are <1, A is an ultraviolet cutoff, 3. Furthermore, the suppression of the crumpled phase
fn(u) — const for u — 0 and f(u) < u3/?>~¢, for u — . by SA makes the possibility of the new tubule phase

For general spatial dimension d, Flory theory treatment even more interesting and important. Whether the tubule
of the self-avoidance (SA) predicts v, = 3/(d + 1), sug- phase does survive in d = 3 can be determined only by
gesting that the tubule phase should be stable down to simulations and experiments on anisotropic membranes,
the lower critical dimension d;. = 2, where v = 1, and both of which we hope our work stimulates.

therefore should exist in 3D, predicting », = %, which In the following discussions, numerical estimates for
implies that z = %, and { = 1_15' However, the analogous ~ the values of the exponents will be obtained from the
Flory result for the crumpled phase » = 4/(d + 2) has  Flory estimate, v, = 3 in 3D; these numbers should be
more recently been called into question. Numerical simu-  taken with a grain of salt, due to the uncertainties just
lations [6] find no crumpled phase below d = 4. An  discussed about the validity of the Flory theory.

uncontrolled Gaussian approximation [7,8] supports this Equation (2) implies that A (L) « L'™" ~ L'/4
finding, predicting v = 4/d, which suggests that d;, = 4  for a square membrane with L, ~ L, = L, using
for the crumpled phase. Both this and the numerical val-  limy—cou = AL,/(AL,)* — . In the “linear polymer”
ues of v for d > 4 agree well with the simulations. limit Ly > L, hyps L;/z/Li(3/2~;) = Lg/z/in,H/z ~

The same approximation for the tubule phase [4] gives L3/2 5/4 finine Lp to be th ] £ L. at which
v = 7/(3d — 5), which suggests that d;. = 4 for the y"/L1". Defining Lp to be the value of L, at whic

tubule phase as well. However, despite its success for the
crumpled phase, this Gaussian approximation is known . .
to be far from trustworthy. For example, it predicts L, is much less than L’.” hence the tubule phase is stable
v = 2/d for linear polymers, which not only is less 2gainst thermal fluctuations as L — co. o
accurate than the Flory result » = 3/(d + 2), but also Like the flat phase [1,2,9], the tubule phase exhibits
incorrectly predicts dj. = 2 for polymers, when, in fact anomalous elasticity; however, as discussed above, SA is
it is well known that dj. = 1 in that case. a strongly relevant perturbation in this new phase. The
Whether the Gaussian approximation is any more tubule, sv;/elled by the SA interaction, acts for L, >
¢ — A- 21 ) . )
reliable for our tubule phase remains an open question. Ly = A (AL )* like a polymer with bending rigidity

hms = Ly, we obtain the orientational persistence length

Lp x sz’ﬂ =~ Li/z. For any roughly square membrane,

One could argue that a slice perpendicular to the y axis Kkp(Ly) >« L LRE Llfz"' =~ Li/ 2,
through our tubule looks like a SA random walk in two Our model for anisotropic membranes is a gen-

dimensions, for which the Flory result of v = 3/4 is eralization of the isotropic model [10]. We char-
known to be exact, while the Gaussian approximation acterize the configuration of the membrane by the
v =1 is clearly wrong. Whether or not this analogy  position 7(x) in the d-dimensional embedding space of
holds, it is clear that SA, though a relevant perturbation, the point in the membrane labeled by a D-dimensional
is much less important for tubules than for the crumpled internal coordinate x. In the physical case, D = 2 and
phase, since points on the membrane widely separated d = 3. The Landau free energy F is an expansion in the
in the y direction never bump into each other in the local tangent vectors d,7(x), keeping only the leading
tubule phase, while they do in the crumpled phase. So  terms consistent with global translation and rotation
it seems quite plausible, the Gaussian approximation invariance:

|
. 1 _ - - . . - .
Flr(x)]= 5 f dP 'x, dy [Kl(ai 7)? + Ky(air)2 + Klya§r . air + tl(air)z + ty(ayr)2

+ R 0L g P+ @7 - 0,7 +uny (047 - 0,77 + TEE (047 - 047
o b Lo
+ vy, (317)? (ayr){] + > f def dPx'89D(#(x) — F(x)), 3)

where the «’s, t’s, u’s, and v’s are elastic constants, and b | In mean-field theory, we seek a configuration 7(x) that
is the SA interaction strength. The first three (x) terms in minimizes the free energy Eq. (3). Since the curvature
F represent the anistotropic bending energy of the mem-  energies « 1(637)? and /9(057)2 vanish when 7(x) is
brane. The elastic constants ¢, and f, are >0 at high linear in x, we seek these minima by inserting the ansatz
temperatures and <O at low temperatures. When both are Fo(x) = (£1x 4, {yy,0,0,...,0) into Eq. (3). For now

positive, the membrane crumples. When either is nega- neglecting the SA interaction,
tive, the membrane extends in the associated direction 1 po [ 2 2
’ i F=_—L{""Ly|t +6,(D -1
and the u and v quartic terms are then needed for stabil- P & | +( )L |
ity. Equation (3) reduces to the model for isotropic mem- + > u, (D — D+ = Uy {;
branes [10] when 7, = t,,k1 | = Kky,k1y = 0,uy, = 2 9
4(17 + u),uJ_l = Uiy =4u, andvU_ = UVly = 49. + v_Ly(D - l)glgy:l» (4)
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where ', , = v, + u,. /(D — 1). Minimizing F over
{1 and ¢, yields two possible phase diagram topologies.
For u'lLuyy > viy, we obtain Fig. 1. Both £, and ¢,
vanish for ¢,,¢, > 0. This is the crumpled phase: the
entire membrane, in mean-field theory, collapses into
the origin 7(x) = 0 for all x. In our new y-tubule

phase, characterized by ¢, = 0 and ¢, = /lt,|/u,, >
0, the membrane is extended in the y direction but
crumpled in the L1 directions. The _L-tubule phase
is the analogous phase with the y and 1 directions
reversed. The tubule-flat boundary slopes are uy, /v,
and v,/ ul |, respectively. In the flat phase, both {;, and
4y # 0. For u’lLuyy < szy, the flat phase disappears and
is replaced by a direct first-order transition from _L-tubule
to y-tubule along the locus ¢, = (vly/uli)ti.

The flat and crumpled phases of anisotropic membranes
in Fig. 1 are in the same universality class [11] as those of
isotropic membranes [1]. In the crumpled phase, ¢, ,1, >
0 and all other local terms in Eq. (3) are irrelevant at
long wavelengths. A change of variables x| = x’,/t, /1,
makes the remaining energy isotropic.

We now consider the effects of fluctuations, ignoring
SA (i.e., the “phantom” membrane). Consider the y-
tubule phase. To treat fluctuations, we perturb around the
mean-field solution by writing 7(x) = ({,y + u(x), h(x)),
where I;(x) is a (d — 1)-component vector orthogonal to
y. Inserting the above expression for 7 into Eq. (3) and
keeping only relevant terms gives Fiot = Fympr + Fel,
where Fypr = %Lﬁ_lLy[ty{yz + %uyy{_f],

1 - .
Fei= > [ dP~x, dy{K(aﬁh)2 + t(aih)2 + g1 (3}t u)?
1. -5T
+ gyl dyu + ?(ayh) , (5)

K= Ky, t = tJ_ + viy{j’, gy = u)’yg)%/z, and gJ. =

t + ulyg)%.

|

(kgT)’g5(@p;(py — q,)*d°'pidp,/(2m)P

Note that the ratios of the coefficients of the quadratic
(3yu)* and the anharmonic d,u(d,h)* and (d,h)* terms
in F¢; must be exactly 4:4:1, since they must appear to-
gether as a result of expanding the rotationally invariant
combination [dyu + %(ayﬁ)z]z. This ratio allows us to
calculate exactly the long-wavelength anomalous elastic-
ity of “phantom” tubules, as we will show in a moment.

The propagators can be read off from Eq. (5),
giving  (hi(@h;(~q)) = ksT 815G (@), (u(@u(—q)) =
ksTGu(@), where Gy '(@) =11 + xq}, G;'(@) =
giqzl + qug, and 5,# is a Kronecker delta when both
indices i and j # y, and is zero if either i or j = y. The
rms fluctuations in the harmonic approximation are

. dP~lq, dq 1
2 y
QP = [t

5/2—-D
OCL_L/ ,

6
g3 + Kqy ©)

clearly revealing that the upper critical dimension is
D,. = 5/2. Below D,., we expect anomalous elasticity.
However, this anomaly is not manifested in the fluctua-
tions of 4 alone. We can see this by integrating out the
phonons « exactly. The only remaining anharmonicity in
the effective elastic free energy for A alone is

[A(k)) - h(k2)]1[A(ks) - h(kq)]

ki.ko k3
X (ki - k2) (k3 - ka)Vi(q), @)

> 1
Fanh[h] = z‘

where q = k; + kz and ky + k; + k3 + kg = 0. The
effective vertex is Vi(q) = g,8.91/(8yq? + g.41),
and is irrelevant for D > 3/2, as can be seen by simple
power counting. Thus in D = 2, the elastic constants
t, g1, and k, are finite and nonzero as g, — 0.

However, g, is driven to zero as g, — 0. In a self-
consistent one-loop perturbative calculation, similar to
that successfully used to compute the anomalous elasticity
in the flat phase [9], we find

gy(q) = g - f i

where g} is the “bare” value of g,. The above argument

shows that x(p) can be replaced by a constant, since the h
elasticity is not anomalous. This self-consistent equation
can be solved by the ansatz g,(q) = g} f,(q,/q%) with

z = %, N, = 5 — 2D, which we have verified works to
all orders in perturbation theory.

We now compute the phantom tubule diameter
Rs and transverse warldering roughness Rims,  de-
fined by _ RG = (R(L.,y) = hO,y)P),hl =
(lh(x1,Ly) — h(x1,0)]?). Because huys and Rg re-
ceive large contributions from q; = 0 and ¢, = 0 zero
modes, respectively, R and A, surprisingly, scale
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+ k(p)pflltlpL — qul? + x(lp — aD) (py — 4,)*]’

(8

I

in different ways with the membrane dimensions L
and L,. Taking into account the zero modes, we cal-
culate A5 and Rg by equipartition, and find the forms
Egs. (1) and (2) with z =1/2, v, = (5 — 2D)/4,
and ¢ = 2v,. For a nearly square membrane
L, ~L,~L— o, for which AL, > (AL,)*, we
obtain As L;/L&D_l)/2 o« L27P/2 ThusforaD = 2
phantom tubule, A, & L. Unlike the flat phase, no
In(L/a) correction arises, so the (D = 2) phantom tubule
is just marginally stable, but with wild transverse undula-
tions. These are greatly suppressed by SA, to the effects
of which we now turn.
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We begin by estimating the radius of gyration using
Flory theory. Specializing henceforth to the physical case
D = 2 for simplicity, we estimate the SA energy Esa
as Esp = prz, where the volume V in the embedding
space occupied by the tubule is V = Rg;_lLy, and the
density p in the embedding space of the tubule is p =
M/V « L,L,/V, where M is the mass of the membrane.
Putting these together gives Esy « L,L3 /R& .

Inserting our earlier, phantom membrane result Rg
Lll/4 (for D = 2) and taking L, o« L2, as required by

anisotropic scaling, we find that Ega o LT(d_l)/z, which
goes to infinity as L, — o« for d < 11. Thus SA
is strongly relevant, and changes the long wavelength
behavior of the membrane, for d < 11.

We can calculate R for d < 11 by combining the
above estimate of Esa with a similar scaling estimate of
the elastic energy yielding ,

RG 2 L LL

EpL = I:ty{yz + uydy) + z(a> ]LlLy + b ;y;eg“ )

©
Minimizing this over Rg, we obtain Rg(L ) « L', with
v, = 3/(d + 1). For the physical case d = 3, this gives
v, = 3/4. Since a slice through the tubule traces out a
crumpled polymer embedded in 2D, we conjecture that
v; = 3/4 is an exact result for the tubule thickness, since
it is for 2D polymers. For a square membrane L, ~ L,
it is straightforward to argue that the g, = 0 zero modes
do not contribute to Rg, and L, is the dominant infrared
cutoff. Hence Eq. (1) gives the correct radius of gyration.

This highly nontrivial ground state for the SA tubule
is not modified by thermal fluctuations. That is, even
at T > 0, the variation of Rg with L, is completely
dominated by the SA energy, i.e., determined by a7 = 0
fixed point. This can be seen by evaluating the elastic
(or SA) energy with Rg(L,) given by this SA ground
state. For an L X L membrane, this energy E. o« L?,
0 =6/(d + 1) =3 (ford = 3),is >kT as L — .

Using a generalization of Landau’s derivation of shell
theory we now calculate anomalous elasticity in the pres-
ence of SA. Bending the tubule with radius of cur-
vature R, > R induces a strain € ~ Rg/R., which
costs an additional elastic energy density g,(Ly, L )e* =
gy(Ly,L1)[Rg (Ly)/RC]2. Interpreting this additional en-
ergy as an effective bending energy density «, (L, L,)/R?
leads to the effective bend modulus «, (L, L,),

ky(L1,Ly) ~ gy(Li,Ly)RG(Ly,Ly)> (10)

Insert_ing Ky(LJ_vLy) = L;]fK(ALy/(ALJ.)Z)a gy(LJ.’ Ly)
= Ly "fo(AL,/(AL.)), Rg(Li,Ly) = L' fr(AL,/
(AL ,)?) into the above expression, we obtain a relation
between the exponents 2v, = z(n + m,), which is
satisfied by our earlier results for the phantom tubule.
The physical SA tubule at T = 0 is absolutely straight
(i.e., {4 = 1 exactly). This implies that the tubule stretch-
ing elastic constant g, = g‘v), its bare value, since there are

neither fluctuations nor SA effects to renormalize it (in
contrast to «). Therefore n, = 0 at T = 0; Eq. (10) then
implies that «( for the T = 0 SA tubule is already anoma-
lous, and given by xo(@) = g5 /" f.(qyA*/Agl).

The effective free energy describing thermal fluctuations
about this nontrivcilal, LSIA ground state is

1 -

Fetr =~ > f _(6]2;_)31 [KO(Q)Q3 + t‘ﬁ]lh(q)lz. (11)
Balancing the Kq‘y‘ term in this expression with the 7g7
term gives the anisotropy of scaling exponent z, defined
by g, < g5. Wethereby obtainz = 1/(2 — »,/z), which
gives z = (1 + v,)/2. Now calculating the fluctuation
corrections to g, from Eq. (8) using the wave-vector
dependent « found above, we find that the integral in
Eq. (8) converges in the infrared and g, is finite asq — 0

provided 2 > % (1 = »,). If v, is anywhere near its Flory
value v; = 3/4 in D = 2,d = 3 this condition is clearly
satisfied. Thus unlike the phantom, the SA tubule has
n, = 0, even at T > 0. Using this fact in Eq. (10) and
taking the Flory exgression for v, in d = 3, we obtain,
e=0+w)/2=5 n="4n/(1+v) =2 9, =0.

Using Eq. (11) to compute the transverse tubule undu-
lations s, we find A = L§fh(ALy/(ALl)Z), where
;= % — (1 + 2v,)/(2z), and fr(x) = x(1+27)/(22) apq
fr(x) = const for x — o and x — 0, respectively. For
a roughly square L X L membrane, we are always in
the x — o limit of the crossover function f}(x), which
implies that the rms transverse undulations of the tubule
are given by gy, ~ L¥270+22)/2 — [1/4  Similar argu-
ments applied to R¢ yield Eq. (1).

We [4] are currently investigating the effects of SA on
the tubule phase in d = d3* — €. The scaling theory
of the tubule-to-flat and crumpled-to-tubule transitions,
along with a Flory theory for these transitions, will be
presented in a future publication [4].
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