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Helium Atoms in Zeolite Cages: Novel Mott-Hubbard and Bose-Hubbard Systems
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Low-lying excitations of He and 'He atoms confined inside zeolite cages have been modeled by
Bose-Hubbard and Mott-Hubbard rings with strong intrasite repulsion and finite intersite attraction.
Differences between He and 'He arise due to mass and the statistics. Calculated temperature
and concentration dependences of the heat capacity agree qualitatively with the experiment, but a
quantitative comparison suggests that disorder may dominate at very low T.

PACS numbers: 67.40.Db, 67.40.Kh, 67.90.+z

Properties of He and He atoms confined to move in
restricted geometry have been of considerable interest dur-

ing the last several decades. Examples of confining media
are Vycor [1], aerogels [2], zeolites [3—6], fullerites [7],
and the surface of graphite [8]. Some of the basic ques-
tions that have attracted both theoretical and experimental
attention include the nature of Bose-Einstein condensation
in porous media (singly and multiply connected pore struc-
ture) [9],quantum transport through microporous channels
[10],and the ground and excited states of low-dimensional
bosonic and fermionic quantum liquids [11,12].

In this Letter we address the last issue and discuss
the results of our theoretical studies on the low-lying
excitations of He and He atoms trapped near the inner
wall of the cages of K-L zeolites, as shown schematically
in Fig. 1. The cages are about 13 A. in diameter and
7.5 A. in length, and interconnected through apertures of
diameter about 7.4 A to form one-dimensional channels.
The K+ ions on the cage wall (large circles in Fig. 1) exert
an attractive potential [13]on the He atoms. The potential
produced by the zeolite cage gives rise to binding sites
(in this case eight) for the He atoms arranged in a ring
geometry near the cage wall shown as intermediate size
circles in Fig. 1 where the medium circles indicate the
binding sites occupied by He atoms.

It has been suggested [3] that at low temperatures
(T & 10 K) and for sufficiently small concentration n,
the number of He atoms per cage, He atoms are indeed
bound near the wall of the cage with extremely small
probability of going from one cage to another because
the barrier for such intercage motion is estimated to be
about 150 K from the isoelectric heat measurements [3].
These bound states will be referred to as cage states [13].
The dominant mode of thermal excitation at low T is
therefore hopping (or tunneling) from one binding site to
another inside a single cage. When n is increased beyond
a critical value n„n,He atoms fill up all the cage states,
and the additional n —n, atoms move in the region near
the cage axis and go from one cage to another. These
states will be referred to as channel states. At higher
temperatures, the atoms trapped in the cage states get
thermally excited to the channel states.

Kato et al. [3] have made detailed measurements of the
low-T heat capacity of He atoms adsorbed inside K-L
zeolite. Their results in the concentration range n ~ n,
can be briefiy summarized as follows. (i) For fixed T ~
2 K, the heat capacity/atom C vanishes at both n = 0 and
n = n, and is a relatively flat function of n between these
limits. (ii) For a given n, C is a monotonically increasing
function of T. Furthermore, at the same T and n, C for
He is larger than that for He by more than 25%. For

n ~ n„the T dependence is complicated. Here we limit
ourselves to 0 ~ n ~ n, and low temperatures where the
statistical mechanics of the cage states prevails over that
of practically unoccupied channel states.

The excitations of the He system in the manifold
of cage states can be described by a Bose-Hubbard
model [14] with binding sties localized on a ring. The

FIG. 1. Schematic picture of a K-L zeolite channel showing
the silicate framework and ring arrangement of He adsorption
sites (medium size circles). Large and small circles are,
respectively, K' ions along the channel walls and adsorbed He
atoms.
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Hamiltonian is given by
N N

H = —t g(b; b;+i + H.c.) + —g n;(n; —1)
i=1 L= 1

N

+ Vgn;n;+t, (1)
l= 1

where N is the number of binding (localized) sites and

b; (b; ) destroy (create) a boson (B) at the ith localized
site. In Eq. (1), t is the hopping energy, U is the
repulsive energy between two He atoms occupying the
same site, and V is the attractive energy between atoms
occupying neighboring sites. The boson operators satisfy
the usual commutation rules, and the number operator n;
has eigenvalues 0, 1, 2, etc. The actual physical system
is complex, however, due to disorder in the positions of
framework cations. This will result in random values of
t, V, and U. Therefore a comparison of the results for our
theoretical calculations without disorder with experiment
will give us insight into the role of disorder on the low-
lying excitations in these systems.

The He system is similarly described by a Mott-
Hubbard model [15] Hamiltonian

Ntn N

H = —t p(f; f;+i + H.c.) + U gn;in, l
t, C7 L

N

+ Vgn;n;~i. (2)

Here the fermion destruction (f; ) and creation (f, )
operators associated with state i and spin o. satisfy the
usual anticommutation rules, and n; has eigenvalues 0 or
1. The total number of fermions at site i is n; = n;~ + n;~.
We first ignore the spin degrees of freedom of the He
atoms and treat them as spinless fermions (SF's) and
later discuss the effects of including spin. Since He-He
repulsion is quite strong when two atoms occupy the same
binding site we let U ~ ~. Then n; can have eigenvalues
0 or 1 for both bosons and fermions. In this limit both B
and SF systems can be described by a single Hamiltonian.

N N

Ha(sF) = t (c; c;+i +—h.c.) + V g(n;n;+i), (3)
i=1 i=1

where c; = b; (f;) and n; = c; c; = 0 and 1. Thediffer-
ences between B and SF lie in the commutation properties
of the operators and different transfer energies t for He
and He due to their mass difference. For the same t and
V, the spectra of B and SF are identical for an open chain
[16]. As discussed below, the same is true for periodic
chains (the ring geometry in our case) when n (= g n;) is
odd. However, for even n, the corresponding spectra are
different. Thus, in addition to the mass difference, the dif-
ferent statistics will give rise to differences in the heat ca-
pacities of the He and He systems in this ring geometry.
In fact, we will argue that the difference in the statistics
can explain the observed [3] trend in C, whereas the mass
difference goes the other way.
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FIG. 2. Lowest 20 (out of 70) energy states of SF and B for
four particles in an eight-site ring. The energy values are in
K. The hopping parameter t = 14 K and the two values of
intersite attractive interaction V are 0 and —24 K [see Eq. (3)].
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FIG. 3. Temperature dependence of the molar heat capacity
for eight-site n-particle spinless fermion and boson systems.
The parameter values are t = 14 K and V = —24 K [see
Eq. (3)].

The statistics-induced differences between B and SF
systems can be seen by writing down the Hamiltonian
matrix in localized (on the ring sites) representation. We
denote the system of N sites and n particles as (N, n).
For the same t and V, one gets identical matrices for
the two systems when n is odd [16]. Therefore the
corresponding energy spectra and C are also identical.
When n is even, they differ considerably. An example
is shown in Fig. 2 for the system (8,4). It has 8!/(4! X
4!) = 70 states. For finite t and V = 0, the SF states
can be obtained simply by singly occupying the one-
particle states k; = (m /4)(0, ~1, ~2, ~3, 4) with energy
—2t cosk;. But if V 4 0 one must diagonalize the 70 X
70 matirx. The lowest 20 states for both V = 0 and
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V 4 0 are shown in Fig. 2. The energy spectrum depends
sensitively on the statistics and intersite attraction. One
characteristic feature of these results is that for SF each
energy level is always 2n-fold degenerate, whereas for 8
the levels can be either 2n or (2n + 1)-fold degenerate.

In Fig. 3, we show the T dependence of the molar heat
capacity N~C(n, T)/n for the (8,4) system for difference
even values of n. Here, N~ is Avogadro's number.
Bosons are found to have much smaller heat capacity than
spinless fermions. The reason for this is that for the same
t and V the lowest energy gap for the bosons is found
to be larger than that for the spinless fermions. Since
for odd n, 8 and SF systems have identical spectra (for
same t and V) and therefore the same heat capacity, one
can use the odd-n results to extract the effect of mass
difference (through r) The .observed results for the even-
n case would, in principle, disentangle the effects of mass
and statistics on the heat capacity. In practice it may not
be easy since one usually measures C as a function of (n),
the mean occupation number of atoms/cage.

We obtain the theoretical results for C((n), T) as
follows. Using the computed spectra for different n, we
compute the partition function C(n, T) and the distribution
function P(n, T) that a given cage has n atoms at T.
In the experiments, Kato et al. heated and quenched the
system at To (—=20 K) and measured C at T & 2 K «
To. Hence we use P(n, To) in the expression for C((n), T)
and write

C((n},T) = P C(n, T)P{n, To),

where

(n) = g nP(n, To) .
n=O

The C((n), T) vs (n) or T so obtained are compared with
the experiment. We calculate P(n, To) by using the grand
canonical ensemble.

As regards the parameter values, we have estimated
[17] V to be about —20 K ——25 K. A large component
of this attraction comes from the three-body He-K'-He
interaction. The hopping parameter t was chosen such
that the heat capacity for both the systems is of the same
order as the experiment (=0.6 J/Kmol at T = 1.5 K).
With the same parameter values we calculate C for both
He (using the SF model) and He to see the effects of

statistics. We then consider the effect of mass difference
by changing t.

Figure 4 gives the theoretical values of C((n), T) for
He (treated as a SF) as a function of (n) and T for three

different T values. As expected, C = 0 when (n) = 0
and 8 when the sites are either all empty or all full. The
rapid increase in C as one moves away from these two
limits and a relatively [[at structure of C for 2 & (n) & 6
is reproduced nicely in our calculations. The theoretical
values agree qualitatively with experiment near 1.5 K but
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FIG. 4. Heat capacity for spinless fermions as a function of
{n), average number of particles per cage, at three different
temperatures. The symbols are experimental values for He
(Ref. [3]). Theoretical values have been obtained using r =
14 K and V = —24 K [see Eq. (3)].

the agreement gets worse at lower temperatures. For He,
we also see a similar n-dependence, but with the choice
of the same parameter values the theoretical values of C
are too small compared to the experiment, particularly at
low T.

In Fig. 5, we show, for the SF system, the T dependence
of C for three different values of (n). The qualitative T
dependence and the order of magnitude agreement between
theory and experiment (shown as inset) looks reasonable.
For the bosons, our calculated C drops much faster with
T compared to experiment. A plausible reason for this
may be that t is too large. Since He is heavier than He,
we expect the value of t to be smaller for He. This will
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FIG. 5. Temperature dependence for heat capacity of the
spinless fermions for three different values of (n), average
number of particles per cage. The lines refer to the theoretical
results and the symbols refer to the experimental results of Kato
er al. (Ref. [3]) for 'He.
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reduce the excitation energy and hence increase the low-
T heat capacity. For example, for the system (8,4), if we
choose t = 12 K instead of 14 K, the lowest energy gap 6
changes from 10.3 K to 7 K. This reduction in 6 increases
the heat capacity at 1 K from 0.015 to 0.189 J/Kmol, an
increase by nearly a factor of 10. We find that for (n) =
1.67, our theoretical value is 0.344 J/Kmol compared
to the experimental value of 0.4 J/Kmol. However, the
theoretical values are still too small at temperatures less
than 0.5 K. From the above discussions, we see that (i)
the difference in statistics leads to a larger heat capacity
for the spinless fermions, whereas the mass difference,
through a smaller excitation energy gap, leads to a larger
heat capacity for the bosons, and (ii) theoretical values are
smaller than experiment at very low T.

Inclusion of spin for He dramatically increases the
dimension of the Hilbert space. For example, if we
include spin in the system (8,4), the manifold of states
we have to consider is 1120 instead of 70 for the spinless
fermions. But, if the spin and translational degrees of
freedom had decoupled [18], as in the case of an open
chain geometry or an infinite system (both with U = ~),
then the T dependence of C would have been identical
for the SF's and fermions except for a delta function at
T = 0 for the latter; the total number of states associated
with this peak being 2 . On the other hand, for the ring
geometry, the spectra of SF and fermions differ from
each other, and, in principle, the heat capacities will be
different. Furthermore, for fermions, one has to take into
consideration the lack of thermal equilibration between
states differing in total spin quantum number as in the
classic ortho and para hydrogen (H2) problem [19].

In (8,2) and (8,3) systems, assuming thermal equilib-
rium takes place between states with the same total spin
quantum, number, we find that C(2, T) is smaller and
C(3, T) is larger compared to the corresponding SF val-
ues. Thus we believe that inclusion of spin and averag-
ing over n will not change C((n), T) very much when
we include spin for He. However, a detailed calculation
with proper consideration of equilibration between states
of different total spin can confirm this conclusion.

In summary, we have shown that the low-T thermo-
dynamic properties of He and "He atoms trapped inside
the cages of K-L zeolite can be modeled by Mott- (Bose-
)Hubbard rings. The ring geometry brings out nicely the
differences between bosons, spinless fermions, and fermi-
ons. Our work also suggests that at very low T, effects
of disorder are important. In fact, the He-zeolite system
that we have discussed here provides a microscopic model
of tunneling states in disordered systems such as glasses,
which are known to exhibit a linear T heat capacity at low
temperatures.
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