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New Value of the n3 Electron Anomalous Magnetic Moment
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Highly accurate numerical evaluation of the sixth-order term of the electron anomalous magnetic
moment a, has detected an error in the analytic value of a fourth-order infrared-divergent integral,
which is needed to obtain the best estimate of the n term as a combination of analytic values of
67 Feynman diagrams and numerical values of 5 diagrams for which no analytic results are known.
Correction of this error leads to a small but significant revision of the u term. As a consequence the
fine structure constant n determined from theory and experiment of a, is reduced by 55 && 10

PACS numbers: 12.20.Ds, 06.20.Jr, 12.20.Fv, 13.40.Em

The anomalous magnetic moment of the electron a, is
one of the simplest quantities precisely calculable from
first principles. Furthermore, it has been measured very
accurately [1]:

a, (expt) = 1159652188.4(4.3) X 10 ' . (1)
Thus it plays a crucial role in testing the validity of QED,
or, more generally, the standard model. An even more
rigorous test will become feasible when the forthcoming
experiments are completed [2]. To make such a test
meaningful, however, it is necessary to improve the sixth-
order (n ) and eighth-order (n") terms of a, .

This paper reports the result of a new numerical eval-
uation of the n3 term. All 72 Feynman diagrams con-
tributing to the n3 term have been evaluated numerically
[3], and all but 5 are now known analytically [4—6]. The
new calculation confirms the analytic results to a much
higher degree, and reduces the uncertainty in the remain-
ing 5 diagrams by an order of magnitude. More impor-
tantly, however, improved precision of the calculation has
led to the discovery of a small error in the analytic value
of a fourth-order infrared-divergent (IR-divergent) inte-
gral, which is needed to obtain the best estimate of the n3
term as a "hybrid" of analytic values of 67 Feynman dia-
grams and numerical values of the remaining 5 diagrams.
Correction of this error leads to a small (0.44%) but sig-
nificant revision of the a term. This has the effect of
reducing the fine structure constant n determined from
theory and experiment of a, by 55 X 10

The QED part of the contribution can be expressed as

a, = At + A2(m, /m~) + A2(m, /m, )

At = At (n/vr) + At (a/n)(2) (4)

+ A, (n/~) + A, (n/~) +(6) 3 (8)

representing 1, 7, 72, and 891 Feynman diagrams, respec-
tively, have been evaluated. Previously reported values
of these coefficients are [3]

Ai = 05,(2)

0.328 478 965. . . ,

At = 1.176 11(42),

AI = —1.434(138) . (4)

Ai and A~ are known analytically. The value of A~ is(2) (4) (~) .

determined by purely numerical means using the Monte
Carlo integration routine vEGAs [7]. On the other hand,

the value of At quoted in (4) is a "hybrid" obtained by
(6)

combining the analytic results for 51 diagrams and the
best numerical values of 21 diagrams for which no exact
values were available. (Of the latter, 16 have since been
evaluated analytically [5].)

22 of the diagrams contributing to A~ contain closed(6)

electron loops of vacuum-polarization or light-light scat-
tering type. Numerical and analytic values of these
contributions agree very well [3,5,6]. The remaining
50 diagrams are represented by the eight self-energy-
like diagrams 6A, . . . , 60 of Fig. 1. The method devel-
oped in [8] expresses the renormalized magnetic moments
a6&, . . . , a6H [omitting the factor (n/7r) for simplicity]
as follows:

A~, = 4.46(20) X 10 (2)

Thus far the first four coefficients in the perturbation
expansion of the mass-independent A~ term

+ A3(m, /m~, m, /m, ),
where m„m~, and m are the masses of the electron,
muon, and tau, respectively. A2 and A3 as well as the
contributions of the hadronic and weak interactions are
very small and known with sufficient accuracy. They add
up to [3]

a6g = AM6g —282AM4b

+ (2I4, + B2 —2L2B2)M2,

a6~ = AM6s + (L2 —B2)AM4b

+ asm„(M, .[I] —M, )

+ [ AB4b + 214, + 2I—4I

+ (B2 L2)']M2 ~

(5)

(6)
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a6D = 2AM6D —282™4,—2L2AM4b

+ 2( AL4, ——I4, + I4, + 2L282 —L2)M2,

(8)

FIG. 1. Sixth-order self-energy-like diagrams representing
50 vertex diagrams with three virtual photons. 5 vertex
diagrams are generated by insertion of an external magnetic
field in the electron line of each diagram. Diagrams related to
6D and 6G by time reversal are not shown.

Note that I4„ I4„ I4(, and I4, are absent in (13). Thus
there is no need to compute them explicitly. Val-
ues of the second-order quantities are M2 = 0.5, M2* =
1.0, M2 [I] = —1.0, and 582 = 0.75.

The result of the pre-1990 evaluation of (13) is

a( (Fig. 1; 1990) = 0.905 l(86) . (14)

The details of this calculation are given in Table X and
Table XI of Ref. [3]. An analytic value corresponding to
(14) is not available since diagram 6H is not yet known
analytically.

Nevertheless, it was possible to obtain a value more
accurate than (14) by combining the analytic and semian-
alytic results known for the diagrams 6A to 6G [4] with
the purely numerical result for the diagram 6H. For this
purpose, as is seen from (12), one has to know the IR-
divergent integral I4, which was evaluated analytically
by Sapirstein [9]. Using his result

a6~ = AM6@ —82AM4,
—2(AL4, + I4, —L282)M2 + I4xM2, (9)

I4 = E3.I4, —InA,

EI4, = —2.504839, (15)

a6F = AM6F —2L25M4, —2(AL4, + I4, )M2

+ 3L,'M2, (10)

where A is the IR cutoff mass in units of electron mass,
one obtains the hybrid value

a( )(Fig. 1; 1990h) = 0.899 87(42) .

a6H = AM6H —2(EL4 + I4 )M2. (12)

a6G = 25M6G 2L25M4,
—2(&L4$ + +L4p + I4i + I4g)M2 + 2L2M2 r

The difference 0.0052(86) between (14) and (16) was
well within the uncertainty of the former, apparently

justifying (15). Thus Ai in (4) was chosen in Ref. [3]
(6) .

as the sum of (16) and the contribution of 22 diagrams
containing closed electron loops. Since then analytic
evaluation of the latter was completed, giving [5]

Here AM6A, . . . , AM6H are the UV- and IR-finite
parts of the sixth-order integrals defined in [3].
AM4„AM4b, ABm4„56m4b, AL4„. . . , and M2,
M2*, M2. [I] are finite quantities of fourth and second
order. Fourth-order terms I4, I4„ I4I, I4, and second-
order terms 82, L2 are IR divergent.

Combining (5)—(12) one obtains
H

a( (Fig. 1) = g g AM6 —3682AM
n=A

+ 66m (M2 [I] —M2*)

—[58 + 25L —2(58 ) ]M

(13)

where g = 2 for o. = D, G, g = 1 otherwise, and

0.276 262. . . . (17)

This modifies Ai of (4) only slightly.
(6)

In order to compare the theory with the measurement
it is necessary to know the value of the fine structure
constant o. . Currently there are three measurements of n
whose precision exceeds 0.1 part in a million (0.1 ppm).
They are based on the quantum Hall effect [10], the ac
Josephson effect [11],and the measurement of the ratio of
Planck's constant h and the neutron mass m„[12]:

n '(q. Hall) = 137.035 997 9(32) (0.024 ppm),

n '(acJ) = 137.035 977 0(77) (0.056 ppm),

n '(h/m„) = 137.03601082(524) (0.039 ppm) .

(18)
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Substitution of these n's in (3) leads to the theoretical
predictions

a( ) (Fig. 1; 1995) = 0.904 882(347) .

This is in good agreement with (14).

(19)

TABLE I. The contribution of sixth-order diagrams of Fig. 1

to the electron anomalous magnetic moment. g = 1(2) for
time-reversal symmetric (asymmetric) diagrams. All integrals
are evaluated in double precision except in a small domain of
6A, where the integral is evaluated in quadruple precision (using
107 function calls, 60 iterations) as is indicated by the second
numbers in the row for 6A; similarly for 6G.

a, (q. Hall) = 1 159652 140.4(5.3)(4.1)(27.1) X 10

a, (acJ) = 1159652317.0(5.3)(4.1)(65.3) X 10

a (h/m ) = 1159652027.7(5.3)(4.1)(44.4) X 10

where the three errors on each line are due to the
(6) (8)

uncertainties in A], A~, and n used in the evaluation.
These values are about —1.7, +2.0, and —3.6 standard
deviations away from the experiment (1).

If one wants to explain the difference between a, (expt)
and a, (h/m„) in terms of the eighth-order effect, one

needs A~ —+4. Although the real error of A~ might
(8) (8)

'
.

be larger than that of (4) by a factor of 2 or even 3, which
is not inconceivable because of insufficient Monte Carlo
sampling of the integrand in the quoted calculation, the
probability that the result of vEGAs integration is off by as
much as 40 standard deviations is infinitesimal.

Another avenue to be explored is the sixth-order term

A] . In this case we must increase A~ by 0.013 or 1.1%(6) (6)

to explain a, (expt) —a, (h/m„). This is about 30 times

larger than the uncertainty of A~ quoted in (4), which
(6)

again looks highly unlikely. Note, however, that A~ in
(6) .

(4) is a hybrid value. Its error may arise not only from
numerical integration of the sixth-order integrals but also
from the fourth-order IR-divergent integral I4, .

To examine this question I have evaluated a(6) (Fig. 1)
numerically once again with much (more than 100 times)
higher statistics. The results of the new calculation are
given in Table I. Substituting these results and the new
values of auxiliary integrals listed in Table II in Eq. (13),
one obtains

TABLE II. Auxiliary integrals. AM4, and AM4b are known
exactly.

Integral

AM4
AM4b

56m4,
56m4b
AB4,
AB4b
AL4,
AL4,
AL41
AL4,

Value

0.218 333 12. . .
—0.187 5
—0.301 600(14)

2.207 939(15)
—0.039 811(15)
—0.397 282(15)
—0.481 852(8)

0.003 378(6)
0.124 814(3)
0.407 653(4)

Function calls
per iteration

(in units of 10 )

20
20
10
10
10
10
10
10

No. of
iterations

65
64
63
64
55
56
60
56

On the other hand, (19) disagrees with the hybrid
result (16) by more than 9 standard deviations. To obtain

(6)
the hybrid A& one must know the fourth-order integral
I4 . Unfortunately, this integral, evaluated analytically
by Sapirstein [9], has not been checked independently.
In order to provide such a check, I have evaluated the
IR-finite part 514 or 14, in several ways. I have also
evaluated 514„514t, and 514„where [13]

14, = 614,

14l = 614l

14, = 514,

5 1+ —Ink + —(InA),
4 2
1 1——lnA ——(ink),
4 2
1 1——lnA ——(ink),
2 2

since they are needed to check the analytic results of
as~, . . . , a6G, individually. [As was mentioned above,

(6)there is no need to know them in order to calculate ae
(Fig. 1) from Eq. (13). It is for this reason that I have
not evaluated them in the past. ] Instead of direct analytic
evaluation, I have evaluated them in two nonanalytic
ways. One is by a straightforward numerical integration
of exact Feynman-parametric integrals. Column 2 of
Table III lists the values of /t. I4, 514„514t, and 614,
thus obtained. Another is by comparison of the analytic

Diagram g~ AM6~ Function calls
per iteration

(in units of 10 )

No. of
iterations

TABLE III. Various evaluations of AI4, AI4, . , AI4~, and
AI4, . All integrals listed in column 2 have been evaluated
using 10 function calls per iteration and about 60 iterations.

6A
6B
6C
6D
6F
6F
6G
6H

—1.354 698(89)
3.018 838(152)

—0.335 204(142)
0.928 666(138)
1.198785(121)
0.753 486(107)
2.467 476(143)

—2.206 436(39)

40, 0.1

40
40
80
20
40

10, 1

200

60, 60
60
60
62
60
65

60, 60
68

Integral

AI4

AI4,
614I

AI4,.

Numerical
integration

—2.509 977(31)

0.996 035(28)
2.277 918(23)

0.262 707(27)

Combination of
formulas

—2.509 935(301)
—2.510 118(361)

0.995 886(108)
2.278 051(179)
2.277 941(179)
0.262 749(89)

Formulas
used

(5), (9)
(7), (1o)

(1o)
(5), (6)

(10), (11)
(5)
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values of a6q, . . . , a6G with the corresponding numerical
integration results by means of the equations (5)—(11).
Column 3 lists the results obtained in this way. Column 4
lists the formulas used in deriving column 3.

The results in Table III clearly disagree with AI4, of
(15). Informed of these results Sapirstein has evaluated it
analytically once again and obtained the new value [14]

39 1
AI4, = —+ (ln2 —5)g(2) ——g(3)

8 4
= —2.510003 149. . . , (20)

where f(n) is the Riemann g function. This is in excellent
agreement with the values given in Table III. Knowing
the result (20) one can improve the hybrid value of a(6

(Fig. 1), namely, the combination of the analytic results
for a6&, . . . , a6G [4,5] and the numerically obtained value
of a60. The new value is

a( )(Fig. 1; 1995h) = 0.904997(40) .

This is in good agreement with (19).
Our calculation shows that the analytic and numerical

results of a6g, . . . , a6g agree, in the order listed in Table I,
within about 0.46, 1.10, 1.40, 1.13, 0.07, 1.34, and
0.85 times the uncertainties of numerical integration. The
overall agreement between analytic and numerical results
is excellent, enhancing confidence in both results.

As for the numerical precision of a6H, the consistency
of all previous evaluations on various computers and with
various sizes of sampling statistics indicates that the error
given in Table I can be trusted. Combining this with the
rest of the sixth-order correction given in (17), one finds

AI = 1.181 259(40) .

Note that this uncertainty comes entirely from a6H.
(~)

Using this and a still tentative value of Ai given in
[15],and including Aa, of (2), one obtains the new value

a, (q. Hall) = 1159652201.4(0.5)(2.1)(27.1) X 10

(21)
(6) (~)

where the errors are due to the uncertainties in Ai, Ai
and u(q. Hall), respectively. This is in agreement with
experiment within the uncertainty of theory. On the
other hand, the revised values of a, (acJ) and a, (h/m„)
are about +2.9 and —2.3 standard deviations away from
experiment. Currently numerical work is in progress to

improve At t which will reduce the second error of (21).(8)

At present it is not possible to test QED more rigor-
ously because of the uncertainties in the measurements of
n listed in (18). A more sensible way to test QED is to
compare these a 's with the a determined from the theory
and experiment of a, :

n '(a, ) = 137.035 99944(57) (0.0042 ppm) .

The uncertainty comes mostly from experiment [1]. Note
that this o. is 5 to 13 times more precise than those listed
in (18).
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