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Dirichlet Branes and Ramond-Ramond Charges
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We show that D-branes, extended objects defined by mixed Dirichlet-Neumann boundary conditions,
break half the supersymmetries of the type II superstring and carry a complete set of electric and

magnetic Ramond-Ramond charges. The product of the electric and magnetic charges is a single Dirac
unit, and the quantum of charge is that required by string duality. This is strong evidence that D-branes
are intrinsic to type II string theory and are the Ramond-Ramond sources needed for string duality.
Also, we find in the IIa string a 9-form potential, which gives an effective cosmological constant.
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The type II closed superstring has two kinds of gauge
field, from the Neveu-Schwarz —Neveu-Schwarz (NSNS)
and Ramond-Ramond (RR) sectors of the string Hilbert
space [1]. The respective vertex operators are jOX~A~(X)
and QI (t" . . . I "")QF~, ~ (X). Here j is a world-sheet
weight (1,0) current and Q and Q are (0, 1) and (1,0)
spin fields, the world-sheet currents associated with space-
time supersymmetry [2]. From the physical state condi-
tions, A„(X)plays the role of a spacetime vector potential,
while the physical state conditions for F imply (in the no-
tation of forms) dF = d*F = 0. These are the Bianchi
identity and field equation for an n-form field strength.

The NSNS and RR gauge fields are quite different in
perturbation theory. String states carry the world-sheet
charge associated with the current j, and this translates into
a charge under the corresponding NSNS spacetime gauge
symmetry. On the other hand, all string states are neutral
under the RR symmetries because only the field strength 0
appears in the vertex operator. Further, backgrounds with
nontrivial NSNS gauge fields are well studied in conformal
field theory, whereas backgrounds of RR gauge fields are
not easily understood in this way: The spin fields depend
on the ghosts, with the additional complication of picture
changing, and they break the separate superconformal
invariances of the matter and ghost theories.

One of the important lessons of string duality is that such
world-sheet distinctions are artifacts of string perturbation
theory, with no invariant significance. Various dualities
interchange NSNS and RR states, and string duality re-

uires that states carrying the various RR charges exist
[3]. Previously it has been suggested that these are black
p-branes, extended versions of black holes [4]. In this pa-
per we will observe that there is another class of objects
which carry the RR charges, the D(irichlet)-branes studied
in Ref. [5].

Let us begin with a type II closed superstring theory.
Add open strings with Neumann boundary conditions
on p + 1 coordinates and Dirichlet conditions on the
remaining 9 —p,

n" 8 X" =0,

The open string end points thus live on a hyperplane,
the D-brane, with p spatia1 and one timelike dimensions.
Only closed strings propagate in the bulk of spacetime,
but sense the hyperplane through the usual open-closed
interactions. This is a consistent string theory, provided

p is even in the IIa theory or odd in the IIb theory. The
consistency conditions will be explained further below,
but consistency can also be seen from the fact that these
boundary conditions arise in the T dual of the usual type
I string theory [5,6].

One would not expect a perfectly rigid object in a theory
with gravity, and indeed the D-brane is dynamical. In
Ref. [5] it is shown that there are massless open-string
excitations propagating on the D-brane, the T duals of
the photons, with precisely the properties of collective
coordinates for transverse fluctuations of the D-brane. It
is further shown that since the D-brane tension arises
from the disk, it scales in string units as g, g being
the closed string coupling. This is the same coupling-
constant dependence as for the branes carrying RR charges
[7]. Now let us take this further. Far from the D-brane
we see only the closed-string spectrum, with two d = 10
gravitinos. However, world-sheet boundaries reAect the
right-moving Q into the left-moving Q, so only one
linear combination of the two supercharges is a good
symmetry of the full state. In other words, in the type II
theory coupled to the D-brane, half of the supersymmetries
of the bulk theory are broken: this is a BPS state.

The BPS property and the scaling of the tension identify
the D-brane as a carrier of RR charge, but we can also
see this by direction calcu1ation. The disk tadpole for
a closed string state ~P) can be written as (Q~B), where
~B) is the closed-string state created by the boundary [9—
11]. The reader need not feel compelled to work through
these rather detailed references: The essential points will
be evident in the simple calculation (5). In Refs. [10,11]
this is studied for the RR sector of the superstring with
Neumann boundaries, and in Ref. [8] for fully Dirichlet
conditions. The Ramond ground-state component of ~B)
is determined by a condition

X" =0, p, = p + 1, . . . , 9. (Po —i/o)IB) = o. (2)
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this being the superconformal partner of the Neumann
condition on X&. Call the ground state defined by
these conditions ~0). In Ref. [10] it is shown that this
corresponds to a tadpole for an RR 10-form potential
(there will be more on the 10-form below). Now go to
the mixed boundary conditions (1). The boundary state
satisfies

(1)IO Po )IB) =0, p, = 0, . . . , p,
(Po + Pp)l~) =0, p = p+

and the ground state becomes

A = Vp+l

1x — —16
2 n=l

(1 + ~2n)8 + ~
—1 (1 + ~2n —1)8

n=l

In the formalism of Ref. [10] this removes 9 —p indices,
leaving a (p + 1)-form potential, as appropriate for
coupling to a p-dimensional object. Also, since only the
even forms appear in the IIb theory, and only the odd
forms in the IIa, consistency between the projections in
the closed and open string sectors (the analog of modular
invariance) gives the consistency condition stated earlier.

The actual value of the quantum of charge is of some
interest. This can be determined from a calculation on
the disk, but is more easily extracted from a one-loop
vacuum amplitude by factorization. Consider parallel
Dirichlet p-branes, at X~ = 0 and at X~ = Y& for
p, = p + 1, . . . , 9, where Y& are some fixed coordinates.
There are open strings with one end attached to each D-
brane, and the one-loop vacuum graph from such states is
a sum over cylinders with one end lying on each D-brane.
This amplitude thus also includes the exchange of a single
closed string between the two p-branes. The amplitude is
given by (we will work in Euchdean spacetime)

t(p'+ m,')/2 (—g)+' 2 (2~)p+', t
The factor Vp+ l is the volume of the D-brane, defined by
putting the system in a large box, the 2 is for real fields,
and the 2 is from interchanging the ends of the oriented

2
string. Alternately, the net symmetry factor 2

= 1 arises
because the discrete part of the world-sheet differential
invariance is completely fixed. The sum runs over the
spectrum of open strings with ends fixed on the respective
D-branes; this is given by the usual oscillator sum with
an additional term Yp'Y~/4~2n'2 in the mass squared
from the tension of the stretched string. Carrying out the
oscillator sum and momentum integral gives

(2~t)
—(p+1)/2e —tY /sn a'

(1 2n) —8

is the scalar Green function in 9 —p dimensions.
We compare the RR contribution with that from a (p +

1)-form potential A„+1, Fp~z = dA„+1, with action [12]

Ap

2 +2Fp+2 + 1p'p Ap+l . (9)

For later convenience we have not chosen a normalization
for Ap+l, so two constants o.p and p, p appear. Calculat-
ing the amplitude from exchange of a (p + 1)-form be-
tween the Dirichlet p-branes, one finds a negative term as
in the amplitude (7), with normalization

p, 2/np = 2m-(4m n')3 P.

For branes with p + p' = 6, the corresponding field
strengths satisfy (p + 2) + (p' + 2) = 10. These are
not independent in the type II string but rather are related
by Hodge duality, Fp+2 FQ —p ~ A Dirac quantization
condition therefore restricts the corresponding charges
[13]. Integrate the field strength 'F„+2 on an (8 —p)-
sphere surrounding a p-brane; from the action (9) one
finds total flux ~I1 = p, p/np. One can take *F„+2 =
F8 „=dA7 p except on a Dirac string at the pole. Then

1 1with 2 in the trace, from the NS sector with 2 in the trace,
l

and the NS sector with 2(—1)F in the trace; the R sector
with 2(—1)F gives no net contribution.

The sum in large brackets vanishes by the usual "ab-
struse identity" of supersymmetric string theory. From
the open string point of view this rejects the supersym-
metry of the spectrum, while in terms of the closed string
exchange it reflects the fact that there is no net force be-
tween BPS states. As in Ref. [10], it is straightforward
to separate the two kinds of closed string exchange. In-
terchanging world-sheet space and time so as to see the
closed string spectrum, the terms without (—1)F in the
trace come from the closed string NSNS states (graviton
and dilaton), while the term with (—1) comes from the
closed string RR states. The massless closed string poles
arise from t ~ 0; using standard 8-function asymptotics
in this limit, the amplitude becomes

1 dt
A = —(1 —l)Vp+1

(2~t) (p+ )/ (t/277n )
= (1 —I)Vp+12m(4' n') "G9 p(Y ).

Here (1 —1) is from the NSNS and RR sectors, respec-
tively, and

G — (Y') = —~'P ""1((7—p)/2) (Y')" "" (8)
1

9—p

(1 2n —1)8 *Fp+2 =
7 p

A7

where we define q = e '/ . The three terms in large
braces come, respectively, from the open string R sector

where the latter integral is on a small sphere around the
Dirac string. In order that the Dirac string be invisible to
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a (6 —p)-brane, we need p, 6 p4 = 27m for integer n.
That is, the Dirac quantization condition is

ppp6 p/np ——2~n. (12)

The charges (10) of the D-branes satisfy this with mini-
mum quantum n = 1 (it follows from Fp+z = "Fs „ that

~p = ~6—p).
From the point of view of the open string loop

calculation this is a "string miracle, " a coincidence in
need of deeper explanation. Had the Dirac quantization
condition not been satisfied, it would likely imply a subtle
inconsistency in the type I superstring. That the minimum
quantum is found strongly suggests that D-branes are
actually the RR-charged objects required by string duality.

One can test this further. While the Dirac quantiza-
tion condition constrains only the product (12), string
duality makes specific predictions for the individual
charges. Consider a (p + 1)-dimensional world-volume
94 with p-dimensional holes. Under a gauge transfor-
mation 6Ap+&

= dip, the action (9) changes by

65 = LPp (13)

This is the change in phase of a p-brane state under a
gauge transformation. In Ref. [14], the fields are normal-
ized so that the 2-brane wave functions are invariant for
E2 being n ' times an element of the integral cohomol-
ogy. In other words, p, z = 2~/n' Adopti. ng the same
convention for the Dirichlet 2-branes, we would have
nz = 1/27r n'3. This is twice the value found in Ref. [14]
(which would imply an incommensurate ~2 in the charges
of the Dirichlet and solitonic 2-branes), but agrees with
the normalization in Ref. [15]. In comparing, note that
the B„,field in Ref. [15] is twice that in Ref. [14], with
other conventions the same. We have not succeeded in
reconciling these calculations, but strongly expect that the
RR charge is that required by string duality.

This result for the D-brane charge is new evidence both
for string duality and for the conjecture that D-branes
are the RR-charged objects required by string duality.
That is, although it appears that we have modified the

type II theory by adding something new to it, we are
now arguing that these objects are actually intrinsic to
any nonperturbative formulation of the type II theory;
presumably one should think of them as an alternate
representation of the black p -branes. This conjecture
was made earlier and with less evidence in Ref. [5] (the
argument there being that any object that can couple
consistently to closed string must actually be made
of closed strings) and in Ref. [7] [based on the (2n)!
behavior of string perturbation theory [16]].

As an aside, this would also imply that the type I
theory is contained within the type II theory as a sector
of the Hilbert space. The argument (the same as given in
Ref. [5] but now presented in reverse order) is as follows.
Periodically identify some of the dimensions in the type II

spacetime

The equation of motion from varying A implies that n

must equal zero. We cannot readily cancel this with
branes of the opposite orientation and charge because
we would no longer have a BPS state, but we can
cancel it by again orientifolding (with a trivial spacetime
transformation) to make the type I string. The cross cap
gives a 10-form source of the opposite sign, giving in all

i(n —32)p, 9
pacetime

(17)

Thus the equation of motion requires the group SO(32).
It is worth recalling the logic of Ref. [10]:The spacetime

string,

x& —x& + 2~R, ~ = I + 1, . . . , 9.
Now make the spacetime into an orbifold by further
imposing

X& ——XP', p, = p + 1, . . . , 9. (15)

To be precise, combine this with a world-sheet parity
transformation to make an orientifold [5,11,17]. This is
not a consistent string theory. The orientifold points are
sources for the RR fields (by the analog of the above
arguments for D-branes, but with the boundary replaced
by a cross cap), but in the compact space these fields have
nowhere to go. One can screen this charge and obtain
a consistent compactification with exactly 16 D-branes
oriented as in Eq. (1) [18]. Now take R ~ 0. The result
is the type I string [5,6].

A puzzling feature of the Dirichlet p-branes has always
been their diversity, with p ranging from —1 to 9, the
case p = —1 being the D-instanton [7,8]. This now
finds a satisfying explanation in terms of the diversity
of RR forms: The D-branes comprise a complete set of
electric and magnetic RR sources. The IIa theory has
field strengths of rank 2, 4, 6, 8 (with n and 10 —n dual),
which are the curls of potentials of rank 1, 3, 5, 7 and so
couple to p-branes for p = 0, 2, 4, 6. The IIb theory has
field strengths of rank 1, 3, 5, 7, 9, which are the curls of
potentials of rank 0, 2, 4, 6, 8 and couple to p-branes for

8 = —1, 1, 3, 5, 7.
The reader will notice that we have two extra branes,

p = 8 and 9, coupling to 9- and 10-form potentials.
While these forms do not correspond to propagating
states, they are present in the IIa and IIb theories,
respectively, and have important dynamical effects. The
10-form has been discussed previously [10]. It couples to
a 9-brane, but what is that? A 9-brane fills space, so the

open string end points are allowed to go anywhere: This
is simply a Neumann boundary condition. If there are n

9-branes (which must of course lie on top of one another),
the end points have a discrete quantum number: This is
the Chan-Paton degree of freedom. The total coupling of
the branes to the 10-form is
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anomaly for other groups must arise from some world-
sheet superconformal anomaly, but this must in turn
correspond to some spacetime equation that is not being
satisfied.

The 9-form potential in the IIa string has not been
previously noted. The action f F&o*Fto gives the equation
of motion d*Fip = 0, which for a 10-form field strength

implies that *F~p is constant. There are thus no solutions
at nonzero momentum, explaining why this is easily
overlooked, but the constant solution is quite interesting:
It is like a background electric field and so gives a
contribution to the cosmological constant proportional to
the square of the field. Note that if one simply substitutes
a constant *F~p into the action one obtains a cosmological
constant of the wrong (negative) sign because of the
neglect of a surface term. It is obvious on physical
grounds that the cosmological constant is positive, and
this is what one finds from the equations of motion.

Thus the IIa superstring has a cosmological constant of
undetermined magnitude (nucleation of 8-branes shifts the
10-form field strength by a large discrete unit, by analogy
with two-dimensional massive electrodynamics). This is
surprising, but has been partially anticipated by Romans
[19],who found the corresponding supergravity theory for
fixed cosmological constant. This 10-form background
would appear to be a continuous parameter which breaks
supersymmetry, a phenomenon not previously found in
string theory. However, in a separate paper [20] it will be
shown that the value of F]p is quantized; the implications
for compactification to four dimensions will also be
discussed.
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