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Measurement of Conditional Phase Shifts for Quantum Logic
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Measurements of the birefringence of a single atom strongly coupled to a high-finesse optical
resonator are reported, with nonlinear phase shifts observed for an intracavity photon number much
less than one. A proposal to utilize the measured conditional phase shifts for implementing quantum
logic via a quantum-phase gate (QPG) is considered. Within the context of a simple model for the field
transformation, the parameters of the "truth table" for the QPG are determined.

PACS numbers: 89.80.+h, 32.80.—t, 33.55.Ad, 42.65.Pc

Although the theory of quantum computation dates back
more than a decade to the seminal storks of Feynman and
Deutsch [1], there has recently been an explosion of new
activity driven in large measure by Shor's quantum algo-
rithm [2] for efficient factorization. While most attention
has been directed toward theoretical issues, several strate-
gies have also been proposed for laboratory investigations
[3]. However, the demands on experimental systems for
building quantum computational networks [4] are quite se-
vere, requiring strong coupling between quantum carriers
of information ("qubits ') in an environment with minimal
dissipation. Hence, experimental progress has lagged be-
hind the remarkable theoretical developments in quantum
information theory.

Within this context, we present a significant experi-
mental step toward realizing quantum logic with individ-
ual photons as qubits. Moreover, our work bears import
for related experimental challenges such as quantum
nondemolition (QND) measurement and quantum cryp-
tography. Specifically, we report the demonstration of
conditional dynamics at the single-photon level between
two frequency-distinct fields in an optical resonator. Our
measurements utilize the circular birefringence of an atom
strongly coupled to the resonator to rotate the linear polar-
ization of a transmitted probe beam. The phase shift be-
tween circular polarization states o is conditioned upon
the intensity of a pump beam via a Kerr-type nonlinear-
ity, with conditional phase shifts 6 —16 per intracavity
photon extracted from our data. To explore further the
prospects for quantum logic based on these capabilities,
we have experimentally investigated a candidate quantum-
phase gate (QPG) and, within the context of a simple
model, have extracted relevant phase shifts for the "truth
table" of the QPG. In our proposed implementation, "Ily-
ing qubits" are single-photon pulses propagating in two
frequency-offset channels, with internal states specified by
cr ~ polarization.

It should be noted at the outset that necessary and
sufficient testing procedures have not yet been established
for providing direct experimental verification that a given
"black box" laboratory system can perform quantum
logic transformations with sufficient fidelity to implement
Deutsch's quantum Turing machine [1]. In particular, it

is not known what level of dissipation (if any) can be
tolerated in experimental systems before the advantages
of unitary information processing are lost. However,
any laboratory quantum gate must exhibit coherence
and demonstrably produce entanglement between qubits.
The practical application of such criteria requires the
formulation of new measurement strategies, which we
consider explicitly for our experiment.

Our efforts here focus on the implementation of quan-
tum logic by exploiting the extremely large optical non-
linearities realizable in cavity quantum electrodynamics
(CQED) [5,6]. In CQED systems, individual photons cir-
culating in a high-finesse resonator can interact strongly
via their mutual coupling to a single intracavity atom. The
critical parameters that characterize our apparatus are g,
the dipole coupling rate of atom to cavity; ~, the cavity-
field damping rate; and y, the transverse atomic decay
rate to noncavity modes. The current work is performed
with parameters such that t~ ) g /t~ ) y. In this bad
cavity regime the atom*s coherent coupling to the cav-
ity mode (at rate g /I~) dominates incoherent emission
into free space (at rate y), making it possible to couple
strongly a single atom to the cavity mode in a manner that
allows for efficient transfer of electromagnetic fields from
input to output channels (at rate x), thus creating an ef-
fectively one dimensional a-tom [6]. The atom-cavity sys-
tem may therefore be viewed as a quantum-optical device
(a nonlinear one atom wave plate), w-hich is exploited for
processing field states.

Conditional dynamics in our system originate from the
nonlinear optical response of a cesium atom coupled to
the cavity field. For the particular optical frequencies
used, the relevant atomic states form a three-level sys-
tem shown in the inset of Fig. 1. The transitions cou-
ple to cavity modes with orthogonal circular polarizations
o. with rates g, where the o+ transition corresponds
to (6SiI2, F = 4, m = 4) (6P3/2 F' = 5, m' = 5) and
the o. transition connects (m = 4) to (m' = 3). Since
g = g+/~45, we set g = 0 to simplify the current
discussion (this is not an essential approximation). As
shown in Fig. 1, the ground state (F = 4, m = 4) is pre-
pared by optical pumping of an atomic beam of ce-
sium just before it enters the high finesse ( g = 18000)
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FIG. 1. Schematic of the experimental apparatus.

cavity. The cavity length and Gaussian waist are 56 p, m
and 35 p, m. The mirrors (Mt, M2) have transmission co-
efficients (1.1 X 10 6, 3.5 X 10 ). Together with the
atomic lifetime 7. = 32 ns and transit time To = 7~, these
parameters lead to the set of rates (g+, K, ), Tp )/27r =
(20, 75, 2.5, 0.7) MHz. Hence, the intracavity saturation
photon number mo = 4y /3g+ = 0.02 photons, the criti-
cal atom number No = 2~@/g+ = 0.94 atoms, and the
one-photon tipping angle 2g+ To = 15m.

To characterize photon-photon interactions inside our
atom-cavity device, we investigate the transmission of
monochromatic coherent-state pump and probe beams,
which are independently tunable in frequency, power, and
polarization [6] (see Fig. 1). After passing through the
cavity, these beams are analyzed for polarization state
with a rotatable half-wave plate, a polarizer, and balanced
heterodyne detectors.

Turning now to our measurements, we present in Fig. 2
the weak-field response (average intracavity photon num-
ber « mo) of the atom-cavity system for the case of co-

incident atomic (au~) and cavity (cue) resonances. For
these scans the average intracavity atom number is N =
1.0 ~ 0.1 atom, as determined by fits to the data as dis-
cussed in Refs. [6,7]. The inset data in Fig. 2 give the ratio
T of transmitted power with atoms present to that with-
out as a function of the detuning A, of the probe, which
is o+ polarized to interact with the strong g+ transition.
The main data of Fig. 2 represent the phase of the trans-
mission function and are taken by injecting a linearly po-
larized probe beam, with the or+ component of this beam
attaining a phase shift due to the composite atom-cavity
system, while the o. component only receives a phase
shift corresponding to an empty cavity (in the approxima-
tion g ~ 0). The differential phase P, between the rT~

components combines with changes in amplitude to pro-
duce an elliptically polarized output beam with its major
axis rotated by @,/2 relative to the linearly polarized input,
so that @, can be determined by analysis of the polariza-
tion state of the output beam.

To utilize these phase shifts for conditional dynamics,
we next consider measurements of nonlinear dispersion.
We fix the detuning A, of the weak linearly polarized
probe beam (m, = 10 photons) at a position on the
dispersion curve of Fig. 2 corresponding to relatively low
intracavity loss as determined from T . As a controlling
field, we inject a a+-polarized pump beam at detuning
Ab. Figure 3 displays the variation of the phase 4, of
the probe beam for a wide range of pump powers, with
4'„measured by polarization interferometry as discussed
above. In the limit mb ~ 0, 4, ~ P„which is the
phase shift for the probe field alone. Note that the pump-
probe coupling is manifest for mb = 0.1, with a 30%%uo

reduction of ~4, ~
as mb goes from 0.1 to 0.3 photon. The

Fig. 3 inset shows the corresponding nonlinearity of T
for single frequency resonant excitation.
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FIG. 2. Measured weak-field response of the atom-cavity
system for N = 1.0 ~ 0.1 atom. Full curves represent the
theoretical model from Ref. [6]. The inset shows the squared
modulus of the normalized probe transmission T and the main
axes show probe phase shift @,. A, denotes detuning from the
resonance frequency co& = ~&.

FIG. 3. Probe phase shift 4 vs mb for an injected o +
pump, for N = 0.9 atom and pump (probe) detuning of
+20 (+30) MHz from atomic resonance as shown in Fig. 2.
Error bars indicate uncertainties in least squares fits used for
evaluating the phase shifts. The inset shows transmission T„
vs I for a resonant probe without pump, with N = 0.6.
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These measurements represent the realization of a non-
linear optical susceptibility at the single-photon level and
unambiguously demonstrate the conditional dynamics nec-
essary for implementing quantum logic. To quantify fur-
ther the interaction strength involved, we note that the
pump and probe input fields are prepared as uncorre-
lated coherent states with small amplitudes ln I, IP I

1. Hence, their composite state can be expanded in the
form lp) ~ [I0), + n ll), ] [IO)b + pll)b]. our ansatz
for the transformation of field states is

jl&. I&)b ~ e'~"
I j). Ik&b, j, & = &0, 1j, (1)

which amounts to the physically motivated assumption that
Fock states asymptotically connect to the dressed states
of the atom-cavity system and hence are the appropri-
ate eigenstates of the transformation. For p, oo + p, ~ ~ 4
p, o& + p, &o, this unitary transformation exhibits condi-
tional dynamics suitable for quantum logic. Setting p, op =
0, p, to = p„p,ot = @b, and defining a parameter 5 by
p, ~~

= @, + @b + 5, we find the output state

lg..t) = l~&. IP)b + ~P[e' —1]Il). Il)b, (2)
where n —= ne'&" and P —= Pe'@b. This state is clearly
entangled for 5 4 0. To connect this model to our
observations, we examine the reduced density operator for
the a field alone and find that in the limit P ~ 0, Eq. (2)
leads to tIi, = p, —2mb sin(A/2). Therefore 5 may be
determined directly from measurements of the initial slope
BtIi, /8mb in a plot of the phase tIi of the probe field
versus pump intensity lb.

Note that although the effects of dissipation are ne-
glected in Eqs. (1) and (2), they could be incorporated
via a density matrix corresponding to IP,„,&. However,
we shall temporarily set aside such considerations since
we are operating with large detunings from atomic reso-
nance in order to approximate purely dispersive interac-
tions. For example, for the measurements of Fig. 3 the
amplitude of the probe beam changes by less than 3% in
moving from N = 0 to N = 1 intracavity atom.

From the computational point of view, the data of Fig. 3
explicitly demonstrate analog logic (conditional mapping
of complex amplitudes) with subphoton intracavity fields.
To make contact with discrete quantum logic, we next
consider the relation of our experiment to a QPG, for
which input Fock states ll —) for qubits (a, b) of a.
polarization are transformed to output states with phases
specified by the mapping I 1

—
&~ I

1.
—

)b ~ e' ==
l l —), I

1
—

)b
[SJ. A sequence of such gates [supplemented by one bit
rotations in the (a, b) subspaces] could be combined to
serve as a universal element for quantum computation
[9]. Our proposed implementation of this gate employs
two single-photon pulses (a, b) with frequency separation
large compared to the individual bandwidths. These fields
would be incident on the cavity mirror M2 of Fig. 1,
interact with the atom-cavity system, and then refIect
with high efficiency [10]. The basis states I1 —), ll —

)b
of the truth table for the QPG are associated with o
polarizations for the (a, b) fields, which couple to either
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FIG. 4. Dependence of probe phase shift on intensity for two
orthogonal polarizations of the pump beam. Pump (probe)
detuuing is +30 (+20) MHz and N = 0.9 atom.

the weak g or strong g+ transition. For g ~ 0, we
set 0 = 0 and anticipate that the phase shifts 0+ and
0 + will be nothing more than the previously defined
phases (@„pb) for one tT+ photon in the a or b mode
since, for example, ll ), ll )b should suffer the same
phase shift as does

I
1+), IO )b. The dominant nonlinear

phase shift should then be 0++ = 0+ + 0 + + 6++ ——

p, + @b + 5, with 5 4 0 again being the condition for
nontrivial dynamics.

To investigate the truth table for our proposed QPG,
we record the dependence of the phase tIi, (trpb) of the
a (b) field on the intensity of an injected b {a) field of
either o polarization, as shown in Fig. 4. Following the
discussion of Eq. (2), we extract one-photon phase shifts
from initial linear slopes. The straight-line fits shown
in Fig. 4 yield 5++ = 5 = (16 ~ 3) and 0+
(0.3 ~ 2) = 0 as anticipated. With the roles of the (a, b)
modes interchanged, we can likewise find that 0
Hence, subject to the validity of our model (1), the
experimentally determined parameters for our QPG read

) Il )b Il ). Il )b,
Il'&. ll )b,

Il &. Il )b —"""" ll &. Il )b,
where for data as in Fig. 4, @, = (17.5 ~ 1)',
(12.5 ~ 1), and 6 = (16 ~ 3) .

We believe that this demonstration of polarigation-
conditional phase shifts holds great promise for the
implementation of quantum logic with flying qubits"
encoded by the polarization of single-photon pulses.
Given the ability to generate a Il&, ]1&b state of arbi-
trary polarization, it would then be straightforward to de-
rive states of mutually orthogonal polarization to span the
four-dimensional qubit Hilbert space, and hence to mea-
sure directly the diagonal elements of the SU(4) trans-
fer matrix (which is a task that cannot be accomplished
with only coherent states). Note that single-photon pulses
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could be generated for this purpose by a variety of tech-
niques and that the optical response of our system to
pulses with duration long compared to the inverse cavity
damping time I/Ic should closely reproduce the steady-
state behavior investigated here [10]. Furthermore, op-
eration in a regime of strong coupling with g ~ ~ ~ y
[7] affords the possibility of yet larger conditional phase
shifts for our quantum-phase gate in cavity QED [10].

We wish to stress that the parameter 5 has model-
independent significance as the strength of the dispersive
nonlinear interaction between intracavity fields, quoted in
degrees per unit of stored energy. Its large measured value
represents a unique achievement within the field of non-
linear optics. Our ansatz (1), on the other hand, may be
viewed with some skepticism, for although our assump-
tions seem reasonable, we have not explicitly verified the
full transformation (2). We are thus led to consider the
question of how to evaluate operationally the potential of
our system for performing quantum logic, without relying
on any particular theoretical model of the appropriate state
transformation. From the example provided by Shor's al-
gorithm, it seems reasonable to adopt the observation of
coherence and the production of entanglement as neces-
sary conditions for calling a candidate device a quantum
gate. With these conditions in mind, we briefIy consider
strategies for evaluating our laboratory system.

Let us first consider damping of coherences in the out-
put fields by writing their joint density matrix in the gen-
eralized form p~l, d~I, . Here pj~ represents a pure-state
density matrix in a basis 1j, ic) = (0, b, 1, b) for Eqs. (1)
and (2) and (j, k) = (I, b, I,+q) for Eq. (3), and the pa-
rameters dj~ provide a phenomenological characteriza-
tion of decoherence. Physical considerations require that
Tr[ pli, dlk] = 1, but dissipative processes could in princi-
ple cause complete dephasing of the output density matrix
(dj~t. ~ 0). Fortunately, with optical fields there exists a
straightforward procedure for establishing that this is not
the case —heterodyne detection such as implemented in
the current work provides signals that are proportional to
off-diagonal matrix elements p jj,djp.

As regards the second criterion, we note that the output
state (2) clearly shows entanglement between the pump and
probe fields for 5 4 0. Hence there must exist a Clauser-
Horne-Shimony-Holt (CHSH) inequality [11]violated by
correlation measurements on ~f,«). Following, e.g. , the
method of Gisin and Peres [12] we could explicitly formu-
late the optimal correlation measurement for our particular
gate in terms of n, p, and A. Unfortunately the violation
must necessarily be of order ~nP(1 —cosh)~ (& 1 and
therefore quite difficult to detect experimentally. In order
to quantify the degree of entanglement that could be gen-
erated in our current apparatus we consider the input state
(II ) + II+) ) (II )b + [I+)b)/2, for which the sum
of expectation values in the appropriate CHSH inequal-
ity is 2/1 + sin (5/2). Note that 2 corresponds to the
classical upper limit, while the measured conditional phase
shift 5 = 16 per photon would generate a value of 2.02

[13]. Although we do not know of any rigorous procedure
to compute a "transfer matrix" analogous to (3) for com-
pactly specifying the mapping of input to output states in
the presence offinite dissipation, the correlation functions
appearing in any relevant CHSH inequality can be calcu-
lated for arbitrary input fields using Heisenberg equations
of motion and the quantum regression theorem. Thus the
dependence of entanglement production on djk could be
investigated in quantitative detail [14].
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