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Dynamic Exchange Effects in Broadband Dielectric Spectroscopy
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We calculate the consequences of molecular exchange between two states with different relaxation
rates in dielectric spectra. In a critical range where exchange rates are of the order of the relaxation
rates, both individual processes show apparently increased relaxation frequencies, and the slower process
gains intensity from the faster. In the fast exchange limit, only one process with averaged relaxation
rate remains. The model is well suited to describe the effects in the dielectric spectra of a microconfined
glass-forming liquid (salol) in porous glasses.

PACS numbers: 77.22.Gm

En broadband dielectric spectroscopy, the dynamical be-
havior of a sample is studied from the analysis of its
frequency dependent dielectric function. Data are con-
ventionally interpreted in terms of superimposed Debye,
stretched exponential, Havriliak-Negami, or other relax-
ation functions. The characteristic relaxation frequen-
cies can be related to dynamical processes, e.g. , cluster,
molecular, or segmental motions. The temperature depen-
dence of a particular relaxation process gives information
on mobilities, thermal activation, cooperativity, and glass
transition temperatures [1,2].

We consider a sample consisting of two subsystems
with different relaxation characteristics, as for example
molecules in the bulk and surface layer, respectively, of
a sample in confining geometry. Let the dielectric relax-
ation in each subsystem be characterized by single pro-
cesses with relaxation rates s~ = I/rt and s2 = I/r2.
As long as the molecules of the two subsystems do not
exchange during the characteristic time of the measure-
ment (the larger of rt and r2), one expects two peaks
in the dielectric spectrum, with intensities proportional to
the relative occupation numbers in the subsystems. At ex-
change rates fast compared to ~~ and ~2, it is self-evident
that only one averaged process will be observed in the di-
electric spectrum with a relaxation strength equal to the
total of the subsystems.

Here, we study the critical infIuence of dynamical
exchange and the transition from the two-process to
a one-process character of the dielectric spectrum if
molecules jump randomly between the two subsystems at
intermediate rates. For resonance processes, these effects
are well understood (see, e.g. , [3] for NMR spectra). In a
simple two line spectrum, transition from slow exchange
to fast exchange appears first as a broadening of the two
original resonance lines and the reduction of their mutual
splitting with increasing exchange rate. At intermediate
exchange rates, a single line with maximum broadening
has formed at the position of the averaged frequency.
With still faster exchange, the line broadening reduces
again until one sharp line at the averaged frequency
remains. In the following we calculate analogous effects
on dielectric relaxation spectra.

nt(t) = n)(t)e " + n ) (t') ce "nz(t —t ') dt'

The function n2 is calculated analogously with permuta-
tion of indices 1,2. Inserting n; = exp( —s;t), one ends
up with a set of two coupled integral equations,

n, (t) = e '"'+ c e ~' l n (t —t)dt,

np(t) = e "+'l' + c e t' l n~(t —t)dt

For simplicity, we assume two Debye processes. In
absence of exchange, the normalized relaxation functions
nt z(t) = exp( —st 2t) describe the behavior of the molec-
ular polarization in states 1 and 2, respectively, in the
time domain. The complex dielectric function e (co) is
related to n via Fourier transform. The relative dielec-
tric strengths are given by the occupation numbers n&, n2
of the respective states. First, we consider two equally
intensive processes. We analyze the relaxation functions
nt(t), n2(t) of molecules starting in states 1 and 2, re-
spectively, under the inhuence of random jumps. The ex-
change mechanism is a Poisson jump process with jump
rate c, where c;~At is the probability that a molecule
changes from state i to state j during the infinitesimal time
interval 6t. For conservation of the occupation numbers
nj = n2, the jump rates are equal: c~2 = c2~ = c. The
actual shape of the exchange process should be of minor
significance for the effects observed in the dielectric data.
The important parameter is the rate c which is the inverse
of the average time a particle resides in one subsystem
without a jump.

The probability of a particle remaining in its original
state is exp( —ct), and a first jump at time t' occurs
with a probability density c exp( —ct'). Therefore the
relaxation function nt (t) of all particles starting in state 1

at t = 0 is given by the undisturbed relaxation function
n& (t) multiplied by the probability exp( —ct) that no jump
occurred, plus the probability c exp( —ct') that a particle
changes its state at time t' with relaxation n~(t') before
and n2(t —t') after the jump, integrated over all times
O~t'~t,
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Its solution can be readily found after Carson-Heaviside
transformation
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After substitution of (2) in (3), one obtains the solution
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where we have introduced FIG. 1. Top: Relaxation of two Debye processes with s2 =
10s~ under the inhuence of a Poisson exchange process with
jump rate c according to Eqs. (5) and (6), time axis normalized
with the average relaxation rate s. Bottom: sum of both
relaxation curves n = n~ + a2 [Eq. (8)]. Dotted lines: no
exchange, c = 0; solid lines: c = s~, dashed lines: c = sq.

After inverse transformation into the time domain, the
resulting n;(t) are

c —as
n ) (t) = e "' cosh(qt) + sinhqt

c+ as
n2(t) = e "' cosh(qt) + sinhqt

q )

One can obtain the same results by constructing and
solving the matrix rate equations ci; = C;~n~. Figure 1

visualizes these functions for s2/s~ = 10 and three differ-
ent jump rates c. With exchange, relaxation of the particles
initially in the slow state becomes faster and relaxation of
those starting in the fast state slows down. At times »1/c,
one common slope is found for both curves, i.e., the parti-
cles "forget" their initial states. The faster the exchange,
the sooner both processes couple and reach the averaged
slope s = r —q. In the experiment, however, one can-
not distinguish between contributions n~ and nq. The to-
tal relaxation function n(t) = n~(t) + n2(t) is shown in
the bottom part of Fig. 1. Moreover, in dielectric spec-
troscopy one usually analyzes e(cu) by the fit to empirical
relaxation functions. Therefore we rewrite a(t) as a sum
of exponential functions and treat the dielectric response as
a superposition of Debye processes, where the exponents

give apparent relaxation frequencies and the factors repre-
sent the apparent dielectric strengths,

n(t) = 1+ —e " '+ 1 ——e "+ '. (7)
( c „, / cI

q) E q)
One realizes that the relaxation function in the presence
of dynamical exchange can be interpreted as a sum of
two exponentials. In the limit c = 0 (no exchange),
the exponents are equivalent to the original rates s j

and s2. With increasing c, both relaxation rates shift to
higher values (faster relaxation). The fast rate diverges
with s + 2c in the limit c ~ ~, whereas the slow rate
asymptotically approaches the average s. With increasing
exchange, the fast process rapidly loses its apparent
intensity (1 —c/q), the slow process gains intensity
(1 + c/q) and comprises the total intensity at c ~ ~.

Figure 2 depicts the scenario for s2 = 100S~, where the
horizontal axis denotes the logarithmic relaxation time,
and the height of the vertical bars correspond to apparent
dielectric strength. Note the difference in the behavior
of resonance lines described above. When the dielectric
spectra are analyzed in terms of Debye [or Kohlrausch-
Williams-Waits (KWW), Havriliak-Negami, etc.] func-
tions [4—8], one observes two apparent processes with

4699



VOLUME 75, NUMBER 25 PHYSICAL REVIEW LETTERS 18 DEcEMBER 1995

1 00.0

—2.0 10.0

1.0

0

C)

o —0.5

(a)

0.01
c/s

0.0 1.00 =

0.5

1.0
10

apparent

I

100

FIG. 2. Two dielectric relaxation processes with s2 = 100s~
under the inhuence of mutual exchange with jump rate c. The
height of the vertical bars denotes their apparent relaxation
strengths, and the horizontal positions give their relaxation rates
as given in Eq. (7).

both relaxation rates increasing with faster exchange, con-
nected with a transfer of dielectric strength from the fast
to the slow process. It has to be noted at this point that
similar effects are well known from the behavior of NMR
longitudinal and transverse relaxation times [9,10], and
the corresponding equations can be directly adopted.

Without derivation we add here the solutions for two
subsystems with different intensities due to different
occupation numbers n j and n2 states 1 and 2. The
jump rates c&2 and C2& are now different and fulfill the
conservation condition c]2n ~

= C2~ n2. We introduce

C]2 C2] C~2 + C2

2 2

Q =c +As +2hshc.

c

Similarly to Eq. (7), we obtain

a(t) = —+ +1 c AcAsl
~e

—(~ —Q)t
2 2Q 2Qc )

1 c Ac As (+g),
2 2Q 2Qc

for the complete relaxation function (sum of relaxation
strengths normalized to 1).

Typical graphs are visualized in Fig. 3, where a differ-
ent representation than in Fig. 2 is chosen to allow for
straightforward comparison with the experimental data be-
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low. We keep the exchange rate constant and lower the
relaxation rates s&, s2 = 100s& exponentially from left to
right (dotted lines) to model typical slowing down of re-
laxation rates with decreasing temperature. In the top part,
the curves represent the apparent relaxation rates r ~ Q;
in the bottom part of the figure, the apparent relaxa-

1 c AcAs
tion strengths 2 ~ (z& + 2&, ) are shown in logarithmic
scale. The apparent shift to higher relaxation frequencies
is of course only an effect of conventional data interpreta-
tion. Molecules starting in the fast relaxation state do not
relax faster by exchange with a dynamically slower state.
This is easily verified from the graphs in Fig. 1 or by cal-
culating the time derivatives of n;(t)

These theoretical results can be used to interpret recent
experimental dielectric data of salol (phenylsalicylate)
confined in porous sol-gel glasses [11]. In bulk salol, one
observes a single relaxation process. Its relaxation rate
decreases with lower temperatures (with VFT behavior).
Dielectric bulk data are given by stars in Fig. 4. When

FIG. 3. Top: apparent relaxation rates 1/~ (in arbitrary units)
of two processes with relaxation time ratio $2/s] = 100 at
fixed exchange rate c, and s slowing down from left to right.
The dotted lines visualize the assumed exponential decrease
of the undisturbed rates s~ and s2. The relative strengths of
the original fast and slow processes are 1: 2 (dashed line)
and 2: 1 (solid line) respectively. (6c/c = (nt —n2)/(n~ +
nz) = ~1/2). Bottom: The apparent relaxation strengths
Ae, notation as above. The relative strength of the slow
process approaches 1, the fast process strength decays to zero
with increasing exchange, irrespective of the strengths of the
uncoupled processes.
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FIG. 4. Dielectric strength Ae and relaxation rate 1/r of salol
in the bulk (stars) and in porous sol-gel glass of 7.5 nm (open
symbols) and 2.5 nm (filled symbols) diameter. Circles and
squares denote the volume and surface processes, respectively.
Note the excellent qualitative agreement of the curves marked
by open symbols here with the solid lines in Fig. 3, as well as
those marked by filled symbols with the dashed lines in Fig. 3.

salol is adsorbed to porous glass with nanometer pore di-
ameters, new characteristic features are observed. One
process, which can obviously be attributed to the free sa-
lol in the pores, at high temperatures shows a relaxation
rate equal to that of the bulk, but with decreasing tempera-
ture it becomes faster than bulk relaxation at comparable
temperatures. A second process, attributed to a layer of
surface bound salol, appears at relaxation rates almost two
decades slower. With lowering temperature, it gradually
approaches the bulk rate. (A third process at very low
frequencies, due to Maxwell-Wagner polarization, will
not be considered here and has been omitted in the rep-
resentation. ) As temperature reaches the vicinity of the
glass transition, the fast (volume) process loses its dielec-
tric strength. The second (surface) process gains strength
such that the sum of both processes roughly follows the
temperature curve of the bulk value. Comparison with
Fig. 3 suggests the following interpretation: Both the
surface and volume relaxation rates in the pores are fast
compared to the molecular exchange process between sur-
face bound and free salol at high temperatures. Their
ratio is roughly 1: 100. On the basis of the ratio of
pore radii and molecular sizes =0.5 nm, one expects that
the ratio of free salol in the pores to the amount of sa-
lol molecules bound in a monomolecular surface layer is1: 2 and 3: 1 for pore diameters of 2.5 nm and

7.5 nm, respectively. This is roughly equal to the respec-
tive experimental high temperature ratios of the dielec-
tric strengths. As the temperature is lowered towards the
glass transition, dielectric relaxation rates reach the or-
der of magnitude of the exchange rate between free and
surface bound salol, which has a weaker temperature de-
pendence. We make use of the reasonable assumption
that the relaxation rate of free salol in the pores obeys the
temperature behavior of the bulk liquid. Now, the pre-
dictions of the exchange model derived above take effect.
With decreasing temperature, random exchange between
surface layer and free molecules leads to an apparently
faster relaxation of the fast (volume) process compared to
the bulk curve, and also to an increased rate of the slow
(surface) process, which gradually comes near to the bulk
curve. The measured relaxation strengths also show ex-
actly the predicted behavior; the slow process apparently
gains intensity from the fast process. These preliminary
discussions are certainly only qualitative, because we have
no quantitative information on the exchange rates. Nev-
ertheless, the theory describes with great precision all ef-
fects observed experimentally.

Summarizing, we have presented a theoretical descrip-
tion of exchange effects on two-process dielectric relax-
ation spectra. We have shown that experimental data
obtained for salol in microporous glasses can be inter-
preted in terms of a surface-volume exchange of salol
molecules on the characteristic time scale of the dielec-
tric experiment. This promising approach has stimulated
further dielectric and NMR experiments on microconfined
glass-forming liquids, which are now being performed to
allow for a quantitative determination of the molecular
parameters involved and the proof of this interpretation of
the dielectric spectra obtained from microconfined glass-
forming liquids.

We gratefully acknowledge support from the Sonder-
forschungsbereich SFB294.

[1] A. Schonhals, F. Kremer, and E. Schlosser, Phys. Rev.
Lett. 67, 999 (1991).

[2] A. K. Jonscher, Dielectric Relaxation in Solids (Chelsea
Dielectrics Press, London, 1983), p. 100ff.

[3] A. Abragam, The Principles of Nuclear Magnetism
(Clarendon Press, Oxford, 1961), Chap. X.

[4] S. Havriliak and S. Negami, J. Polym. Sci. C 14, 99
(1966).

[5] S. Havriliak and S. Negami, Polymer 8, 161 (1967).
[6) R. Kohlrausch, Ann. Phys. (Leipzig) 12, 393 (1847).
[7] G. Williams and D. C. Watts, Trans. Faraday Soc. 66, 80

(1970).
[8] F. Alvarez, A. Alegria, and J. Colmenero, Phys. Rev. B

44, 7306 (1991).
[9] D. E. Woessner, J. Chem. Phys. 35, 41 (1961).

[10] H. Pfeifer, Nucl. Magn. Res.-Basic Principles and Progress
7, 55 (1972).

[11] M. Amdt and F. Kremer, Mater. Res. Soc. Symp. Proc.
366, 259 (1995).

4701


