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Investigation of Spin Chirality by Polarized Neutrons
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The projection of the chiral spin fluctuations on the magnetization is discussed. Et is shown that it
determines the polarization dependent part of the neutron magnetic scattering. A strong enhancement
of this scattering appears near the chiral phase transition in triangular lattice antiferromagnets as well
as in all cases when the system is soft and its nonlinearity is important. The example of conventional
antiferromagnets is considered. A possibility to observe chiral fluctuations in doped Cu02 planes as a
precursor of a proposed chiral state is discussed.

PACS numbers: 75.25.+z, 61.12.Bt, 75.40.Gb, 75.50.Ee

During the last decade, spin chirality has attracted much
attention (see, for example, [1—3] and references therein).
Frustrated antiferromagnets on a triangular lattice (TLA's)
were the main subject of the discussion. Kawamura
suggested [3] that the phase transition in the stacked
triangular lattice belongs to a new chiral universality
class. This statement was questioned on the basis of a
2+ e expansion [4] and three-loop renormalization group
calculations [5]. However, recent Monte Carlo simulations
[1] and numerous experimental data [6—9] apparently
confirm the Kawamura conjecture. Nevertheless, up to
now we have no definitive solution of the problem. The
doped Cu02 layers in the high-7; superconductors were
considered as another candidate for chiral spin order with
violation of P and T symmetries [10]. In spite of the fact
that this suggestion has not been confirmed experimentally
[11], the persistence of the chiral Iluctuations cannot be
ruled out.

For the complete experimental investigation of the spin
chirality problem, one should study fIuctuations of the chi-
ral variable. However, it is a combination of spin pairs
belonging to different lattice sites [1—3,12]. Correspond-
ing fIuctuations are related to four-spin correlations, and
their direct experimental study is impossible. In this pa-
per we discuss the possibility of studying, using polarized
neutrons, a projection of the chiral field on the sample mag-
netization induced by the applied field.

We will show that this projection determines the part
of the cross section which is proportional to the neutron
polarization Pp. It is a pure inelastic part which disap-
pears at ~ = 0, and below we will call it the dynamical
chirality (DC). In general, the Po dependent part of the
cross section consists of two terms: the DC contribution
and the interference between nuclear and magnetic scat-
tering. Both terms are proportional to the field induced
magnetization. In crystals the latter appears near the nu-
clear Bragg reflections only, where it is related to weak
processes such as magnetovibrational scattering. At the
same time, the DC scattering persists near magnetic refIec-
tions where, as we will see below, it is strongly enhanced.
Therefore in what follows we may neglect the interference

K]23 S] X S2 + S2 X S3 + S3 X S]

where S; is a spin in a vertex i. The corresponding
staggered chirality introduced in [12] has the form

—1= N Sz X SR sinQR2~ .

Rl,R2

(2)

In the case of 120 structure of the TLA, the chiral order
is determined by [17]

Sg = E cosQOR + m sinQoR, (3)

where 8 =m =S, 8m=0, and QO=27r X
(2/3, 0, 1/2). As a result, in the elastic scattering cross

scattering completely. As a result, the Pp dependent part
of the cross section is determined by the DC only, and it
may be comparatively easy to separate it from other scat-
tering processes.

The Pp dependent part of the critical scattering in ferro-
magnets has been discussed in [13],where it was ascribed
to three-spin dynamical correlations. In ferromagnets the
chirality is not a relevant variable. However, very strong
nonlinearity of the system near T, gives rise to signifi-
cant DC which has been observed in [14]. Recently, this
method has been used for investigation of the spin-wave
spectra in disordered ferromagnets [15].

In this paper we will study the general properties of DC
and discuss the possibilities of its observation in several
magnetic systems. First of all, we consider the TLA. In
this case, as well as in the Kagome antiferromagnet [16],
the chirality is a relevant variable, and the DC should
provide direct information on the nature of the phase
transition. We then consider ordinary antiferromagnets,
where the DC persists due to the nonlinearity of the system.
We discuss also the possibility of studying the DC in
doped Cu02 layers in the high-T, systems in relation to
the supposed chiral order [10].

In the TLA the chirality of the elementary triangle is
determined as [3]
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x g[Z(Q —Q, + r) —Z(Q + Q, + r)]. (4)

Here r is the reciprocal lattice vector A(0) = N; 5(Q 4
0) = 0 and x~ = x —(xQ)Q. This elastic scattering
may be observed in the case of a one-domain sample,
where the chiral degeneracy is removed. It may be done
by cooling the sample in an electric field [19].

We are interested in the DC contribution to the neutron
scattering. It is determined by the antisymmetric part of
the spin Green's function

G.p(Q, ) = die'-'([S~(r), S 0(0)]).

According to the general rule [20], in the magnetic field
we have G p(H) = Gp ( H) and th—e symmetric G s,
and antisymmetric G~~~ parts of G are even and odd func-
tions of H, respectively. It is convenient below to intro-

(&)
duce the function S p

= iG p. Using the conventional
intermediate state decomposition of the Green's function
[20], one can show that ImG~sl and Res are odd and
ReG and ImS even functions of m, respectively. At
the same time, the neutron cross section is determined by
ImG~ ~ and ImS.

Multiplying (5) by the unit pseudotensor e p~, we
extract the DC contribution

Kg(cu) = i die'"'(50(r) x S &(0)

section a term proportional to K- Po appears [18],where

1K- = —([gi x m~])
2

correlation function introduced in [13,21] for the case of
critical fluctuations in ferromagnets.

The antisymmetric tensor S p(Q, ~) is determined by
an axial vector A: S p

= 6 ppAp We are interested in
uniaxial systems with the c axis perpendicular to the layers.
In this case the general expression for A has the form

A(Q, cu) = hSi(Q, ~) + (ch)cs2(Q, ~), (8)
where Si 2 are scalar functions. As a result we obtain
from Eqs. (6) and (8) K = 2i—[hs~ + (ch)cs2]. For the
isotropic Heisenberg and XY models we have S2 = 0 and
Si = 0, respectively.

Using (8) for the chiral part of the cross section we have

( 1= —P.( oy)'IF(Q) I'—
kdIIda) )p„~ k; 1 —exp( —~/T)

x i(gh) ImSi(Q, ~)
+ (hQ) (Qc) (ch) ImS2(Q, cu)j. (9)

Here we have taken into account that in real experiments,
Po is directed along or opposite to the magnetic field.

In (9) ImSi 2 are even functions of co, and if the
characteristic energy is less than T the chiral cross section
is an odd function of ~ and the chiral contribution to the
quasielastic scattering disappears. It is a consequence of
the orthogonality of the chiral field and magnetization. At
the same time, it was shown [13—15] that due to the cu

dependence of Q the DC contribution to the small-angle
quasielastic scattering persists if the angle between the
beam and the field is not equal to 0 or 90 .

In a low magnetic field we have the following very
crude estimate:

(0) x S~ (r)) . (6)
gp, H

ImSi 2(Q, cu) =
2 gi 2(Q, ~),

Tint
(10)

The dependence of K& on cu is a direct consequence
of the nonlocality of the chiral operator. Indeed, in the
definition (2) we may consider spins Sz, and Sit, at
different times on the same footing as at the different
lattice points.

In the absence of long-range chiral order we have

K&(0) = 0, and at the same time K&(cu) is an odd function

of H. We may consider K&(cu) as a dynamical projection

of the chiral operator K& onto the magnetization induced
by the magnetic field.

Another approach to the problem is the following. In
a low magnetic field the Matsubara Green's functions
acquire an additional term

6G p(ice„) = gpH~MN—d'T d7ie

(7)

where gp, ) 0. The function G p(cu) is an analytical
(w)

continuation of this expression to the real axis. We see
that in low field the DC is determined by the three-spin

where g i 2 is a dimensionless function and T;„t is the
characteristic energy of the spin-spin interaction. We will
see below that this estimation does not take into account
any enhancement which appears if the system becomes
soft in some region of the Q space.

The DC in the TLA. —For definiteness we will base
our analysis on the Kawamura suggestion about the new
class of chiral universality [3,17] and use the conventional
analysis of the scaling dimensionality [22]. According
to the definition (2) in r space, the chirality K is given

by the product Sz && Sz and depends on two variables

R = (Ri + R2)/2 and p = Ri —R2. The chiral critical
fIuctuations are related to the R dependence of K, and

p may be considered as an intrinsic variable of the
chiral field. The same holds for the t dependence of
K. The scaling dimensionality is determined as K(Rs) =
K(R)s, where A~ is related to the corresponding
susceptibility and correlation length exponents in the
usual way [22], Az = (3 —yz/v)/2.

Below T~ we have (K) —g ' —(—r)i », where s is
the correlation length r = (T —T~)/T~ and P~ = vA~.
However, we are interested in the dynamical chirality
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K(p, t) above Tz A. ccording to Eqs. (2) and (7), for small

H the DC is a correlation function (KELSO)H, where So is
the uniform spin density. We may now use the general
expression for the correlation function of two fields A and
8: G~~ = s" ' ', where d is the spatial dimensionality
and A~ ~ are corresponding scaling dimensionalities [22].
In our case So is a noncritical variable and hs = 0.

As a result, we have

(11)
where pre = v(3 —Atr) = P~ + y~ is the chiral cross-
over exponent [3].

From (10) and (11)we get

(gpH l
imSi, z(Q, ~) = I, I@i,z(Q, ~), (12)

( Ttv x«)
where ~~' gives the above-mentioned enhancement of the
chiral scattering. For the Heisenberg and XY models we
have 4z = 0 and C&~ = 0, respectively. The exponents
y, h and v were calculated in [3] for both models, and we
get pH = 1.26(9) and q xy = 1.20(6).

Obviously, the functions 4~ z have maxima at reciprocal
lattice points corresponding to a 120' spin structure, and
below we will consider 4~ 2 as functions of q = Qo —7.
Chiral scaling cannot be applied to a parametrization of
4~ z, as q and cu are intrinsic variables of the chiral field.

They correspond to the correlation of Si and S2 and should
be governed by the conventional TLA scaling for the two-
spin correlation function:

(
+1,2(q ~) = r ~Fl qF. I (13)'

Two

where y is the staggered susceptibility exponent, which
was calculated in [3] for both cases also. As a result,
we have an additional enhancement and Si 2

—7.

where p~ + y = 2.43(16) and 2.33(11) for the H and
I'X models, respectively. Comparing (13) and (12) and
taking into account that (13) has to be less than or of the
same order as the cross section at H = 0, we conclude
that the low-field approximation used above is applicable
if the condition g p, H ~ T~7."' is fulfilled. In other cases
the positiveness of the cross section would be violated.

The dynamical scaling in the TLA has been confirmed
experimentally for CeMnBr3, which is an XY magnet
[23]. It was found that z = 1.5. However, there is no
theoretical estimation of z for XY systems.

The above consideration has been based on the Kawa-
mura suggestion [3]. In this case one can determine the
chiral exponent A~ by combining the conventional and
chiral scattering data. Another way to determine Az is
the elastic scattering below T~ when the cross section has
a term proportional to K~Po, where E~ is given by (4).
Near Tv we have Ez —(—~)t . However, for this study
one has to prepare a one-domain sample using the method
of Ref. [19].

If the Kawamura conjecture is wrong it may be checked
by the chiral scattering. For example, if according to
[1] there are two successive transitions to the chiral and

Neel states with T~ ) T~, we get, instead of (12) and
(13), S)2 —

Ger 7~ F(qg&, ro/Twg&), where 7.r(~) =
(T —Tx(tv')/T~(~l and s~ is the AF correlation length.
In the same way one can analyze other possibilities [4,5].

It is well known that the TLA's are quasi-2D or quasi-1D
systems (see, for example, [7—9] and references therein).
In both cases with increasing ~ above T~, crossover oc-
curs to low-dimensional behavior. In the quasi-2D re-
gion the principal excitations are Z and Zq vortexes in the
XY and Heisenberg TLA's, respectively [24]. The cor-
responding correlation length has the form [25] $KT =

—1/2a exp(b~KT ), where a is of the order of the lattice spac-
ing, b —1, and 'TKT = (T —TKT)/TKT, where TKT is
the Kosterlitz-Thouless transition temperature. According
to [26] we have TKT ( Ttv, and in the 2D region s and
the factor ~ +~~ in the expression for Si 2 should be re-
placed by $KT and ($KT/a), respectively. At the same
time, determination of the ~ dependence remains a com-
plex problem which we do not consider here (cf. [27]). We
do not discuss here the quasi-1D problem either.

Below T& the DC may be calculated using spin-wave
theory with proposed nonlinear complications [28]. The
results of the corresponding calculations will be published
elsewhere.

Conventional antiferromagnets —As sta. te above, DC
persists in any interacting spin system. We illustrate it by
the example of an isotropic two-sublattice antiferromag-
net, where the chirality is not a relevant variable. In the
critical region above T~ the DC should be governed by
conventional scaling, and instead of (12) and (13) we get
S2 =Oand

g jLH ) co
1 z Ig qs I T 3P/z 'I ( )

T&~& ) T
where y is the staggered susceptibility exponent, and we
used the well-known value for the dynamical scaling ex-
ponent, z = 3/2. In this case the low-field approximation
holds if gp, H « T~.

In the spin-wave region one can calculate the DC using
linear spin-wave theory. There are two distinct cases: (1)
the field along c, where c is the direction of the sublattice
magnetization, and (2) H J c. In the second case, if one
takes into account the spin canting provoked by the field,
Eq. (7) for the DC becomes exact, and after standard
calculations for Q in the vicinity of the AF reciprocal
lattice point, one gets

S~(q, M) = —2g p, HS Jodo((co —e )-
X [e,-'+ (gpH)']) ', (15)

where Jo = X~J~ and e~ is the spin-wave energy at

H = 0. This expression has a maximum at gp, H = ez.
It is valid if H «H, z,„ t~;~. The case H~~c is realized
for rather small H & H p' f] p and we do not write
here the corresponding expression. It should be noted
that Eq. (15) holds if T ( e~ only, otherwise the spin-
wave interaction becomes important. This problem will
be considered elsewhere.
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Doped CuO, layers —. Eqs. (14) and (15) hold for
quasi-2D antiferromagnets such as YBapCu206+ and
La2Cu04. With doping, the AF order in the Cu02 planes
is destroyed, and the system becomes superconducting.
In [10,29] it was suggested that in this case the chirality
may be a relevant spin variable. However, due to very
strong spin-spin interaction (T;„, —1 —100 meV) the

DC is small, and direct measurement of the energy distri-
bution related to the chiral scattering is hardly possible.
Meanwhile, the energy transfer at the scattering is large
as compared with T, and one may examine the integrated
DC. In the conventional geometry [30] when the outgoing
neutrons are perpendicular to the Cu02 planes, from (9)
and (10) one gets

dto(1 —ro/F )'i
e —~/r

Lgt(QII ~) + g~(QII to)]Qi/(QII + Qi)
gt(QII, ~) (QIIh)'/(QII + Qi), hie,

(16)

where QII is a fixed two-dimensional momentum trans-
fer, Q~ = k; Lcosa —(1 —to/F;)'l ]j, and n is the an-

gle between k; and the c axis. If H —10T, we have

g p, H/T;„& —10 . In this case, (drr/dA)p, may be of
the order of a few percent as compared with the ordinary
magnetic scattering and may be observed. It would be very
instructive to study a possible enhancement of (do./dA) p,
as a function of T and the doping. In such a way one can
establish if any precursor to the chiral order really exists.

In summary, it has been demonstrated that the polariza-
tion dependent part of the neutron cross section is deter-
mined by the projection of the spin chirality on the sample
magnetization induced by an applied field. This part of
the scattering is purely inelastic, and due to its Pp depen-
dence may be extracted from other scattering processes.
It makes the chiral scattering very suitable for investiga-
tion of the spin dynamics. It was demonstrated that the
chiral scattering should be strongly enhanced in the case
of a phase transition in TLA s as well as in ordinary anti-
ferromagnets. In particular, experimental study of the DC
may clarify the problem of phase transitions in the TLA.
The problem of the chiral scattering on Cu02 layers in the
high-T, superconductors is discussed also.
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